|
|
Publications in Math-Net.Ru |
Citations |
|
2009 |
1. |
L. N. Pushkin, “On the Behavior of the Spectrum of the Limit Frequencies of Digits under Perturbations of a Real Number”, Mat. Zametki, 86:6 (2009), 884–891 ; Math. Notes, 86:6 (2009), 824–830 |
|
2002 |
2. |
L. N. Pushkin, E. Sh. Rakhmatullina, “On the category of numerical sets defined by frequencies of numbers”, Issled. Inform., 4 (2002), 95–98 |
3. |
L. N. Pushkin, “Small Digitwise perturbations of a number make it normal to unrelated bases”, Lobachevskii J. Math., 11 (2002), 22–25 |
|
1996 |
4. |
L. N. Pushkin, “Ergodic properties of sets defined by frequencies of numbers”, Teor. Veroyatnost. i Primenen., 41:3 (1996), 672–677 ; Theory Probab. Appl., 41:3 (1997), 593–597 |
1
|
|
1991 |
5. |
L. N. Pushkin, “Vectors that are Borel normal on a manifold in $R^n$”, Teor. Veroyatnost. i Primenen., 36:2 (1991), 372–376 ; Theory Probab. Appl., 36:2 (1991), 391–395 |
1
|
|
1989 |
6. |
L. N. Pushkin, “Metric variant of Cassel–Schmidt theorem”, Mat. Zametki, 46:1 (1989), 60–66 ; Math. Notes, 46:1 (1989), 538–542 |
2
|
|
1984 |
7. |
L. N. Pushkin, “An infinite-dimensional version of the theorem of fortet and Kac”, Issled. Prikl. Mat., 10 (1984), 54–66 ; J. Soviet Math., 44:5 (1989), 600–609 |
|
1982 |
8. |
L. N. Pushkin, “The rate of convergence in the central limit theorem for sums with a polynomial of an exponential function”, Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 12, 70–73 |
|
1981 |
9. |
L. N. Pushkin, “An infinite-dimensional variant of the Fortet–Kac theorem”, Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 11, 83–85 |
|
Organisations |
|
|
|
|