Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Tsvetkov, Viktor Pavlovich

Statistics Math-Net.Ru
Total publications: 15
Scientific articles: 15

Number of views:
This page:487
Abstract pages:3945
Full texts:1517
References:572
Doctor of physico-mathematical sciences (1985)
E-mail: ;
Website: https://math.tversu.ru/employees/76

https://www.mathnet.ru/eng/person26735
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/306963
https://elibrary.ru/author_items.asp?authorid=27989

Publications in Math-Net.Ru Citations
2017
1. S. A. Mikheev, V. N. Ryzikov, V. P. Tsvetkov, I. V. Tsvetkov, “Determination of instaneous cardiac rhythm parameters in multifractal dynamics model by regularized Newton's method”, Matem. Mod., 29:12 (2017),  147–156  mathnet  elib
2. A. P. Ivanov, A. N. Kudinov, D. Yu. Lebedev, S. A. Mikheev, V. P. Tsvetkov, I. V. Tsvetkov, “Catastrophes instantaneous heart rate in the model multifractal dynamics and based on the data of Holter monitoring”, Matem. Mod., 29:5 (2017),  73–84  mathnet  elib 1
2016
3. A. P. Ivanov, A. N. Kudinov, D. Yu. Lebedev, S. A. Mikheev, V. P. Tsvetkov, I. V. Tsvetkov, “Bifurcation catastrophes of an instant cardiac rhythm in multifractal dynamics model”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2016, no. 1,  63–73  mathnet  elib 2
2015
4. A. P. Ivanov, A. N. Kudinov, D. Y. Lebedev, V. P. Tsvetkov, I. V. Tsvetkov, “Analysis of instantaneous cardiac rhythm in a model multi-fractal dynamics based on Holter monitoring”, Matem. Mod., 27:4 (2015),  16–30  mathnet  elib; Math. Models Comput. Simul., 8:1 (2016), 7–18  scopus 7
2014
5. A. N. Kudinov, O. I. Krylova, V. P. Tsvetkov, I. V. Tsvetkov, “Mathematical model of multifractal dynamics and global warming”, Eurasian Math. J., 5:2 (2014),  52–59  mathnet 1
6. A. N. Kudinov, D. Y. Lebedev, V. P. Tsvetkov, I. V. Tsvetkov, “Mathematical model of multi-fractal dynamics and analysis of heart rate”, Matem. Mod., 26:10 (2014),  127–136  mathnet; Math. Models Comput. Simul., 7:3 (2015), 214–221  scopus 13
2011
7. V. P. Tsvetkov, “Extremum energy of a rotating magnetized gravitating configuration as balance condition”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2011, no. 20,  73–76  mathnet  elib
2010
8. S. A. Miheev, V. P. Tsvetkov, “Formation of ring-shaped bubbles in the mathematical model of the rotating Newtonian polytrops”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2010, no. 17,  73–84  mathnet  elib
9. S. A. Miheev, I. V. Puzynin, V. P. Tsvetkov, “Configurations of rotating magnetic Newtonian polytropics with small index”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2010, no. 16,  75–86  mathnet  elib
2009
10. S. A. Miheev, V. P. Tsvetkov, “Mathematical model of equilibrium rotating newtonian configurations of the degenerate fermi-gas”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2009, no. 15,  107–114  mathnet  elib
11. S. A. Miheev, V. P. Tsvetkov, “Mathematical model of equilibrium rotating newtonian configurations of the degenerate fermi-gas”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2009, no. 13,  15–22  mathnet  elib
2006
12. E. V. Bespalko, S. A. Miheev, I. V. Puzynin, V. P. Tsvetkov, “A gravitating rapidly rotating superdense configuration with realistic state equations”, Matem. Mod., 18:3 (2006),  103–119  mathnet  mathscinet  zmath 3
2003
13. V. P. Tsvetkov, “Integral Equation for the Spinor Amplitude of a Dirac Particle in a Curved Space-Time”, TMF, 135:2 (2003),  331–337  mathnet  zmath; Theoret. and Math. Phys., 135:2 (2003), 727–732  isi
2000
14. D. E. Kumpyak, V. P. Tsvetkov, “Massive neutral Dirac particle in a curved space–time with the Kerr–Schild metric”, TMF, 125:2 (2000),  343–352  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 125:2 (2000), 1593–1601  isi 1
1990
15. V. V. Masyukov, V. P. Tsvetkov, “The Burman–Lagrange series method in the problem of analytic representation of Newtonian potential of perturbed ellipsoidal configurations”, Dokl. Akad. Nauk SSSR, 313:5 (1990),  1099–1102  mathnet  mathscinet; Dokl. Math., 35:8 (1990), 736–737 1

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024