|
|
Publications in Math-Net.Ru |
Citations |
|
2002 |
1. |
V. A. Zheludev, A. B. Pevnyi, “The Butterworth wavelet transform and its implementation with the use of recursive filters”, Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002), 597–608 ; Comput. Math. Math. Phys., 42:4 (2002), 571–582 |
|
2001 |
2. |
V. A. Zheludev, A. B. Pevnyi, “Biorthogonal wavelet schemes based on discrete spline interpolation”, Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001), 537–548 ; Comput. Math. Math. Phys., 41:4 (2001), 502–513 |
1
|
|
1994 |
3. |
V. A. Zheludev, “Wavelets based on periodic splines”, Dokl. Akad. Nauk, 335:1 (1994), 9–13 ; Dokl. Math., 49:2 (1994), 216–222 |
1
|
|
1992 |
4. |
V. A. Zheludev, “Spline-operational calculus and numerical solution of integral convolution equations of the first kind”, Differ. Uravn., 28:2 (1992), 316–329 ; Differ. Equ., 28:2 (1992), 269–280 |
5. |
V. A. Zheludev, “Periodic splines and the fast Fourier transform”, Zh. Vychisl. Mat. Mat. Fiz., 32:2 (1992), 179–198 ; Comput. Math. Math. Phys., 32:2 (1992), 149–165 |
5
|
|
1991 |
6. |
V. A. Zheludev, “Local smoothing splines with a regularizing parameter”, Zh. Vychisl. Mat. Mat. Fiz., 31:2 (1991), 193–211 ; U.S.S.R. Comput. Math. Math. Phys., 31:2 (1991), 11–25 |
3
|
|
1990 |
7. |
V. A. Zheludev, “An operational calculus that is connected with periodic splines”, Dokl. Akad. Nauk SSSR, 313:6 (1990), 1309–1315 ; Dokl. Math., 42:1 (1991), 162–167 |
2
|
8. |
V. A. Zheludev, “Representation of the approximational error term and sharp estimates for some local splines”, Mat. Zametki, 48:3 (1990), 54–65 ; Math. Notes, 48:3 (1990), 911–919 |
4
|
|
1988 |
9. |
V. A. Zheludev, “Approximation remainder terms for local splines of second and fourth degree”, Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 6, 37–46 ; Soviet Math. (Iz. VUZ), 32:6 (1988), 50–61 |
1
|
|
1987 |
10. |
V. A. Zheludev, “Local spline-approximation on arbitrary grids”, Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 8, 14–18 ; Soviet Math. (Iz. VUZ), 31:8 (1987), 16–22 |
11. |
V. A. Zheludev, “Local spline approximation on a uniform mesh”, Zh. Vychisl. Mat. Mat. Fiz., 27:9 (1987), 1296–1310 ; U.S.S.R. Comput. Math. Math. Phys., 27:5 (1987), 8–19 |
13
|
12. |
V. A. Zheludev, “Reconstruction by local splines of functions and their derivatives from mesh data with an error”, Zh. Vychisl. Mat. Mat. Fiz., 27:1 (1987), 22–34 ; U.S.S.R. Comput. Math. Math. Phys., 27:1 (1987), 14–22 |
2
|
|
1985 |
13. |
V. A. Zheludev, “Local quasi-interpolation splines and Fourier transforms”, Dokl. Akad. Nauk SSSR, 282:6 (1985), 1293–1298 |
1
|
|
1983 |
14. |
V. A. Zheludev, “Asymptotic formulas for local spline approximation on a uniform mesh”, Dokl. Akad. Nauk SSSR, 269:4 (1983), 797–802 |
|
1982 |
15. |
V. A. Zheludev, “Derivatives of fractional order and the numerical solution of a class of convolution equations”, Differ. Uravn., 18:11 (1982), 1950–1960 |
|
1981 |
16. |
V. A. Zheludev, “A stable solution of a class of convolution equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 3, 35–45 ; Soviet Math. (Iz. VUZ), 25:3 (1981), 35–46 |
|
1975 |
17. |
V. A. Zheludev, “The approximate solution of a class of equations in convolutions by means of splines”, Zh. Vychisl. Mat. Mat. Fiz., 15:3 (1975), 573–591 ; U.S.S.R. Comput. Math. Math. Phys., 15:3 (1975), 26–45 |
|
1974 |
18. |
V. A. Zheludev, “The well-posedness of a certain class of convolution equations”, Zh. Vychisl. Mat. Mat. Fiz., 14:3 (1974), 610–630 ; U.S.S.R. Comput. Math. Math. Phys., 14:3 (1974), 72–92 |
|
|
|
1988 |
19. |
V. A. Zheludev, “Correction: “Local spline approximation on a uniform grid””, Zh. Vychisl. Mat. Mat. Fiz., 28:3 (1988), 476 |
|
Organisations |
|
|
|
|