Computing monodromy groups of holonomic systems of gypergeometric differential equations, inverse problems in the analytic theory of differential equations, topology of the complements of generalized discriminant amoebas.
T. M. Sadykov, “Beyond the first class of analytic complexity”, Computer Algebra in Scientific Computing (Lille, France, 17 – 21 September 2018.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11077, eds. Vladimir P. Gerdt, Wolfram Koepf, Werner M. Seiler, Evgenii V. Vorozhtsov, Springer Verlag, 2018, 335–344
6.
T. M. Sadykov, “Computational problems of multivariate hypergeometric theory”, Programming and Computer Software, 44:2 (2018), 131–137
S. A. Abramov, A. A. Ryabenko,T. M. Sadykov, “The Second Conference “Computer Algebra” in Moscow”, ACM Communications in Computer Algebra, 51:4 (2018), 103–110
2017
8.
Timur Sadykov, “Polynomial Dynamics of Human Blood Genotypes Frequencies”, Journal of Symbolic Computation, 79:2 (2017), 342-355
T. M. Sadykov, “On the Analytic Complexity of Hypergeometric Functions”, Proc. Steklov Inst. Math., 298 (2017), 248–255
10.
A. A. Kytmanov, A. P. Lyapin, T. M. Sadykov, “Evaluating the Rational Generating Function for the Solution of the Cauchy Problem for a Two-Dimensional Difference Equation with Constant Coefficients”, Programming and Computer Software, 43:2 (2017), 105–111
2016
11.
T. M. Sadykov, S. Tanabé, “Maximally reducible monodromy of bivariate hypergeometric systems”, Izv. Math., 80:1 (2016), 221–262
12.
D. V. Bogdanov, A. A. Kytmanov, T. M. Sadykov, “Algorithmic Computation of Polynomial Amoebas”, Computer Algebra in Scientific Computing (Bucharest, Romania, September 19-23, 2016), Lecture Notes in Computer Science, 9890, eds. Vladimir P. Gerdt, Wolfram Koepf, Werner M. Seiler, Evgenii V. Vorozhtsov, Springer International Publishing, 2016, 87–100http://link.springer.com/chapter/10.1007/978-3-319-45641-6_7
Vitaly A. Krasikov, Timur M. Sadykov, “The Newton polytope of the optimal differential operator for an algebraic curve”, Zhurn. SFU. Ser. Matem. i fiz., 6:2 (2013), 200–210
2012
16.
V. A. Krasikov, T. M. Sadykov, “On the analytic complexity of discriminants”, Proc. Steklov Inst. Math., 279 (2012), 78–92
2009
17.
Timur Sadykov, “Sparse hypergeometric systems”, Nauchnye vedomosti belgorodskogo gosudarstvennogo universiteta. Ser. Matem. i fiz., 17:68 (2009), 64–76http://dspace.bsu.edu.ru/handle/123456789/4922
2008
18.
Timur M. Sadykov, “Hypergeometric Systems with Polynomial Bases”, Zhurn. SFU. Ser. Matem. i fiz., 1:1 (2008), 25–32
19.
F. Lárusson, T. M. Sadykov, “A discrete version of the Riemann–Hilbert problem”, Russian Math. Surveys, 63:5 (2008), 973–975
20.
T. M. Sadykov, “Hypergeometric systems of equations with maximally reducible monodromy”, Doklady Mathematics, 78:3 (2008), 880–882
21.
St. Petersburg Math. J., 19:6 (2008), 1003–1014
2007
22.
A. Dickenstein, T. M. Sadykov, “Bases in the solution space of the Mellin system”, Sb. Math., 198:9 (2007), 1277–1298
23.
A. Dickenstein, T. M. Sadykov, “Algebraicity of solutions to the Mellin system and its monodromy”, Doklady Mathematics, 75:1 (2007), 80–82
2005
24.
A. Dickenstein, L. Matusevich, T.M. Sadykov, “Bivariate Hypergeometric D-modules”, Advances in Mathematics, 196 (2005), 78–123
Hypergeometric polynomials are optimal T. M. Sadykov Seminar on Problem-solving seminar in commutative algebra, Department of Mathematics, Stockholm University October 11, 2016 13:00