Computing monodromy groups of holonomic systems of gypergeometric differential equations, inverse problems in the analytic theory of differential equations, topology of the complements of generalized discriminant amoebas.
T. M. Sadykov, “Beyond the first class of analytic complexity”, Computer Algebra in Scientific Computing (Lille, France, 17 – 21 September 2018.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11077, eds. Vladimir P. Gerdt, Wolfram Koepf, Werner M. Seiler, Evgenii V. Vorozhtsov, Springer Verlag, 2018, 335–344
5.
T. M. Sadykov, “Computational problems of multivariate hypergeometric theory”, Programming and Computer Software, 44:2 (2018), 131–137
S. A. Abramov, A. A. Ryabenko,T. M. Sadykov, “The Second Conference “Computer Algebra” in Moscow”, ACM Communications in Computer Algebra, 51:4 (2018), 103–110
7.
Timur Sadykov, “Polynomial Dynamics of Human Blood Genotypes Frequencies”, Journal of Symbolic Computation, 79:2 (2017), 342-355
T. M. Sadykov, “On the Analytic Complexity of Hypergeometric Functions”, Proc. Steklov Inst. Math., 298 (2017), 248–255
9.
A. A. Kytmanov, A. P. Lyapin, T. M. Sadykov, “Evaluating the Rational Generating Function for the Solution of the Cauchy Problem for a Two-Dimensional Difference Equation with Constant Coefficients”, Programming and Computer Software, 43:2 (2017), 105–111
10.
T. M. Sadykov, S. Tanabé, “Maximally reducible monodromy of bivariate hypergeometric systems”, Izv. Math., 80:1 (2016), 221–262
11.
D. V. Bogdanov, A. A. Kytmanov, T. M. Sadykov, “Algorithmic Computation of Polynomial Amoebas”, Computer Algebra in Scientific Computing (Bucharest, Romania, September 19-23, 2016), Lecture Notes in Computer Science, 9890, eds. Vladimir P. Gerdt, Wolfram Koepf, Werner M. Seiler, Evgenii V. Vorozhtsov, Springer International Publishing, 2016, 87–100http://link.springer.com/chapter/10.1007/978-3-319-45641-6_7
A. I. Normov, T. M. Sadykov, “Analytic complexity of cluster trees”, Prikl. Diskr. Mat., 2014, no. 2, 79–87
13.
Vitaly A. Krasikov, Timur M. Sadykov, “The Newton polytope of the optimal differential operator for an algebraic curve”, Zhurn. SFU. Ser. Matem. i fiz., 6:2 (2013), 200–210
14.
V. A. Krasikov, T. M. Sadykov, “On the analytic complexity of discriminants”, Proc. Steklov Inst. Math., 279 (2012), 78–92
15.
Timur Sadykov, “Sparse hypergeometric systems”, Nauchnye vedomosti belgorodskogo gosudarstvennogo universiteta. Ser. Matem. i fiz., 17:68 (2009), 64–76http://dspace.bsu.edu.ru/handle/123456789/4922
16.
Timur M. Sadykov, “Hypergeometric Systems with Polynomial Bases”, Zhurn. SFU. Ser. Matem. i fiz., 1:1 (2008), 25–32
17.
F. Lárusson, T. M. Sadykov, “A discrete version of the Riemann–Hilbert problem”, Russian Math. Surveys, 63:5 (2008), 973–975
18.
T. M. Sadykov, “Hypergeometric systems of equations with maximally reducible monodromy”, Doklady Mathematics, 78:3 (2008), 880–882
19.
St. Petersburg Math. J., 19:6 (2008), 1003–1014
20.
A. Dickenstein, T. M. Sadykov, “Bases in the solution space of the Mellin system”, Sb. Math., 198:9 (2007), 1277–1298
21.
A. Dickenstein, T. M. Sadykov, “Algebraicity of solutions to the Mellin system and its monodromy”, Doklady Mathematics, 75:1 (2007), 80–82
22.
A. Dickenstein, L. Matusevich, T.M. Sadykov, “Bivariate Hypergeometric D-modules”, Advances in Mathematics, 196 (2005), 78–123
Hypergeometric polynomials are optimal T. M. Sadykov Seminar on Problem-solving seminar in commutative algebra, Department of Mathematics, Stockholm University October 11, 2016 13:00