|
|
Publications in Math-Net.Ru |
Citations |
|
1990 |
1. |
L. Yu. Motylev, “Asymptotics near a turning point for a second-order nonlinear equation”, Mat. Zametki, 48:6 (1990), 145–146 |
|
1989 |
2. |
L. Yu. Motylev, “An asymptotic method for ordinary differential equations with an
infinite-order turning point”, Dokl. Akad. Nauk SSSR, 304:1 (1989), 32–36 ; Dokl. Math., 39:1 (1989), 23–26 |
|
1988 |
3. |
L. Yu. Motylev, “The WKB method and a problem of the turning point for linear equations with nonsmooth dependence on a small parameter”, Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 2, 76–78 ; Soviet Math. (Iz. VUZ), 32:2 (1988), 111–114 |
|
1987 |
4. |
L. Yu. Motylev, “Perturbation theory in a complex domain for equations of Turritin type with a small parameter multiplying the derivative”, Differ. Uravn., 23:11 (1987), 1904–1913 |
|
1986 |
5. |
V. V. Kucherenko, L. Yu. Motylev, “The limits of applicability of the canonical operator method for nonstrictly hyperbolic equations with nonsmooth characteristics”, Izv. Akad. Nauk SSSR Ser. Mat., 50:4 (1986), 741–762 ; Math. USSR-Izv., 29:1 (1987), 95–117 |
1
|
6. |
L. Yu. Motylev, “Asymptotic solutions of the Orr–Sommerfeld equation with a turning point of high order”, Zh. Vychisl. Mat. Mat. Fiz., 26:11 (1986), 1627–1634 ; U.S.S.R. Comput. Math. Math. Phys., 26:6 (1986), 15–20 |
|
1985 |
7. |
V. V. Kucherenko, L. Yu. Motylev, “A parametrix for a nonstrictly hyperbolic equation with nonsmooth characteristics”, Mat. Sb. (N.S.), 127(169):3(7) (1985), 291–310 ; Math. USSR-Sb., 55:2 (1986), 287–307 |
|
1984 |
8. |
V. V. Kucherenko, L. Yu. Motylev, “A nonstrictly hyperbolic equation with nonsmooth characteristics”, Dokl. Akad. Nauk SSSR, 276:5 (1984), 1056–1059 |
2
|
9. |
L. Yu. Motylev, “Formal asymptotic solutions of a class of ordinary differential equations in the neighborhood of a turning point”, Mat. Sb. (N.S.), 123(165):1 (1984), 130–140 ; Math. USSR-Sb., 51:1 (1985), 129–139 |
2
|
|
1979 |
10. |
L. Yu. Motylev, “Transformation of the system of Maxwell equations in an inhomogeneous medium into an equation on the rotation group”, TMF, 38:3 (1979), 364–369 ; Theoret. and Math. Phys., 38:3 (1979), 241–245 |
|
Organisations |
|
|
|
|