Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Svanidze, Nikolay Vladimirovich

Statistics Math-Net.Ru
Total publications: 5
Scientific articles: 5

Number of views:
This page:269
Abstract pages:868
Full texts:346
References:88
Candidate of physico-mathematical sciences (1981)
Speciality: 01.04.02 (Theoretical physics)
Website: https://www.alumni-spbu.ru/man.asp?UID=297
   
Main publications:
  • Matematika : Ucheb.-metod. posobie dlya slushatelei zaoch. podgot. kursov / L. E. Sedneva, N. V. Svanidze; S.-Peterb. gos. arkhitektur.-stroit. un-t, Podgot. kursy. - SPb. : SPbGASU, 1998. - 207 s. : il.

https://www.mathnet.ru/eng/person22873
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/347496
https://elibrary.ru/author_items.asp?authorid=10027

Publications in Math-Net.Ru Citations
2003
1. N. V. Svanidze, “Small islands of stability in the phase space of the Carleson map”, Zap. Nauchn. Sem. POMI, 300 (2003),  250–258  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 128:2 (2005), 2825–2830
1980
2. N. V. Svanidze, “Small perturbations of an integrable dynamical system with an integral invariant”, Trudy Mat. Inst. Steklov., 147 (1980),  124–146  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 147 (1981), 127–151 4
1978
3. N. V. Svanidze, “The existence of invariant tori for the three-dimensional motion of a billiard ball that are concentrated in a neighbourhood of a “closed geodesic on the boundary of the domain””, Uspekhi Mat. Nauk, 33:4(202) (1978),  225–226  mathnet  mathscinet  zmath; Russian Math. Surveys, 33:4 (1978), 267–268
1972
4. V. F. Lazutkin, N. V. Svanidze, “On that how the general ellipcity property of ray sistems for two mirror resonators is connected with their spectra”, Zap. Nauchn. Sem. LOMI, 25 (1972),  111–115  mathnet 1
1969
5. N. V. Svanidze, “The correction member for the eigen frequencies of three-dimensional resonator with mirrors the general curvature of which not parallel”, Zap. Nauchn. Sem. LOMI, 15 (1969),  161–175  mathnet  mathscinet  zmath

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024