Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Andrunakievich, A V

Statistics Math-Net.Ru
Total publications: 10
Scientific articles: 10

Number of views:
This page:2571
Abstract pages:1302
Full texts:539
References:56

https://www.mathnet.ru/eng/person22799
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/210935

Publications in Math-Net.Ru Citations
1991
1. A. V. Andrunakievich, V. A. Andrunakievich, “Rings that are regular relative to a right ideal”, Mat. Zametki, 49:3 (1991),  3–11  mathnet  mathscinet  zmath; Math. Notes, 49:3 (1991), 231–237  isi
1990
2. V. A. Andrunakievich, A. V. Andrunakievich, “Regularity of a ring with respect to right ideals”, Dokl. Akad. Nauk SSSR, 310:2 (1990),  267–272  mathnet  mathscinet  zmath; Dokl. Math., 41:1 (1990), 35–39
1986
3. A. V. Andrunakievich, V. A. Andrunakievich, “Completely semiprime and Abelian regular ideals of a ring”, Mat. Zametki, 39:3 (1986),  311–319  mathnet  mathscinet  zmath; Math. Notes, 39:3 (1986), 168–173  isi
1984
4. V. A. Andrunakievich, A. V. Andrunakievich, “A completely semiprime maximal right ideal of a ring is two-sided”, Dokl. Akad. Nauk SSSR, 279:2 (1984),  270–273  mathnet  mathscinet  zmath 1
1983
5. A. V. Andrunakievich, V. A. Andrunakievich, “On subdirect products of division rings”, Dokl. Akad. Nauk SSSR, 269:4 (1983),  777–780  mathnet  mathscinet  zmath 1
1982
6. A. V. Andrunakievich, V. A. Andrunakievich, “Abelian regular ideals of a ring”, Dokl. Akad. Nauk SSSR, 263:5 (1982),  1033–1036  mathnet  mathscinet  zmath 1
1981
7. A. V. Andrunakievich, V. A. Andrunakievich, “One-sided ideals and radicals of rings”, Algebra Logika, 20:5 (1981),  489–510  mathnet  mathscinet 1
8. A. V. Andrunakievich, V. A. Andrunakievich, “Strictly modular ideals of a ring”, Dokl. Akad. Nauk SSSR, 259:1 (1981),  11–15  mathnet  mathscinet  zmath 2
9. V. A. Andrunakievich, A. V. Andrunakievich, “Strictly modular ideals of a ring”, Dokl. Akad. Nauk SSSR, 257:1 (1981),  11–14  mathnet  mathscinet  zmath 1
1978
10. A. V. Andrunakievich, “Prime elements in idempotent lattices with multiplication and hereditarily idempotent rings”, Uspekhi Mat. Nauk, 33:3(201) (1978),  159–160  mathnet  mathscinet  zmath; Russian Math. Surveys, 33:3 (1978), 141–142

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024