01.01.05 (Probability theory and mathematical statistics)
E-mail:
Keywords:
age-dependent branching processes,
branching processes in random environment,
random permutations,
random trees,
local limit theorems.
Subject:
Branching processes, probabilistic problems of discrete mathematics.
Biography
Graduated from the faculty of Mechanics and Mathematics of the Moscow Lomonosov State University in 1974. A Phd student of the Steklov Mathematical Institute of the Academy of Sciences of the USSR from 1974 till 1977. From 1977 till now a researcher of the Steklov Mathematical Institute of the Academy of Scineces of the USSR and the Russian Academy of Sciences. Defended the PhD dissertation "Limit theorems for branching processes" in 1977 (the superwiser — B. A. Sevastyanov). Has a doctor degree in mathematics ("Critical branching processes with regularly varying generating functions" (defended in 1987). Vatutin has got in 1988 an award of the Academy of Sciences of the USSR for important results in mathematics.
In 2024 he got the A.A.Markov award of the Russian Academy of Sciences for the cycle of works «Limit theorems for branching processes in random environment».
A deputy Editor-in-Chief of the Journal " Theory of Probability and its Applications" (1994–present time),
A member of the Editorial Board of the journals "Markov processes and related fields" (2003–present time), "Discrete Mathematics and Applications" (2014–present time), "Stochastic processes and their Applications" (2002–2004).
Main publications:
Haccou P., Jagers P., Vatutin V.A., Branching processes in
biology: Evolution, Growth and Extinction., Cambridge Series in Adaptive Dynamics, 5, Cambridge University Press, Cambridge, 2005, 316 pp.
Vatutin V.A., “Sufficient condition for the regularity of Bellman-Harris branching processes”, Theory of Probability and its Applications, 31:1 (1987), 50–57
Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Annals of Probability, 33:2 (2005), 645–673
Vatutin V.A., Wachtel V., “Local probabilities for random walks
conditioned to stay positive”, Probabability Theory and Related Fields, 143:1-2 (2009), 177–217
Götz Kersting, Vladimir Vatutin, Discrete time branching processes in random environment, Wiley, New Jersey, USA, 2017, 306 pp.
V. A. Vatutin, C. Dong, E. E. Dyakonova, “Some functionals for random walks and critical branching processes in an extremely unfavorable random environment”, Mat. Sb., 215:10 (2024)
2.
V. A. Vatutin, E. E. Dyakonova, Diskr. Mat.
3.
V. Vatutin, E. Dyakonova, On the prospective minimum of the random walk conditioned to stay non-negative, 2024 , 34 pp., arXiv: 2409.02215
4.
Vladimir A. Vatutin, Elena E. Dyakonova, “Branching processes under nonstandard conditions”, Stoch. Qual. Control, 39:1 (2024), 59–68;
5.
V. A. Vatutin, E. E. Dyakonova, “Letter to the Edinor”, Teor. Veroyatnost. i Primenen.
6.
Charline Smadi, Vladimir Vatutin, “Reduced processes evolving in a mixed environment”, Stoch. Models, 39:1 (2023), 5–20;
7.
V. A. Vatutin, E. E. Dyakonova, “Population size of a critical branching process evolving in unfovarable environment”, Theory Probab. Appl., 68:3 (2023), 411–430
8.
C. Dong, E. Dyakonova, V. Vatutin, Random walks conditioned to stay non-negative and branching processes in non-favorable random environment, 2023 , 35 pp., arXiv: 2303.07776
9.
V. A. Vatutin, “On the closeness of distribution of some random variable to the equiprobable one”, Mat. Vopr. Kriptogr., 14:1 (2023), 5–14
10.
V. A. Vatutin, C. Dong, E. E. Dyakonova, “Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment”, Sb. Math., 214:11 (2023), 1501–1533
11.
V. A. Vatutin, Yo.M.Xusanboev, TARMOQLANUVCHI JARAYONLAR VA ularning tatbiqlari, Vetvyaschiesya protsessy i ikh primeneniya (uzbekskii yazyk), eds. Sh. Q. Formanov, TIPOGRAFF, Tashkent, Uzbekistan, 2023 , 168 pp., kniga na uzbekskom yazyke
12.
C. Dong, E. Dyakonova, V. Vatutin, Some functionals for random walks and critical branching processes in extreme random environment, 2023 , 28 pp., arXiv: 2311.10445
13.
V. A. Vatutin, C. Smadi, “Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family”, Proc. Steklov Inst. Math., 316 (2022), 336–355
14.
V. A. Vatutin, E. E. D'yakonova, “Atypical population size in a two-type decomposable branching process”, Theory Probab. Appl., 67:4 (2022), 516–534
15.
V. A. Vatutin, E. E. Dyakonova, “Critical branching processes evolving in a unfavorable random environment”, Discrete Math. Appl., 34:3 (2024), 175–186
16.
V. Vatutin, E. Dyakonova, Critical branching processes evolving in an unfavorable random environment, 2022 , 15 pp., arXiv: 2209.13611
17.
V. A. Vatutin, E. E. Dyakonova, V. A. Topchii, “Critical Galton-Watson branching processes with a countable set of types and infinite second moments”, Sb. Math., 212:1 (2021), 1–24
18.
Doudou Li, Vladimir Vatutin, Mei Zhang, “Subcritical branching processes in random environment with immigration stopped at zero”, J. Theor. Probability, 34:2 (2021), 874–896 , arXiv: 1906.09590;
Charline Smadi, Vladimir Vatutin, “Critical branching processes in random environment with immigration: survival of a single family”, Extremes, 24 (2021), 433–460 , arXiv: 1911.00316;
Ch. Smadi, V. A. Vatutin, Critical branching processes in random environment with immigration: the size of the only surviving family, 2021 , 26 pp., arXiv: 2109.13315
21.
V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes in random environment”, Russian Math. Surveys, 76:6 (2021), 1019–1063
22.
V. A. Vatutin, E. E. D'yakonova, “The Survival Probability for a Class of Multitype Subcritical Branching Processes in Random Environment”, Math. Notes, 107:2 (2020), 189–200
23.
V. A. Vatutin, E. E. Dyakonova, “Branching processes in random environment with sibling dependence”, J. Math. Sci. (N.Y.), 246:4 (2020), 569–579 , arXiv: 1812.10304;
Elena Dyakonova, Doudou Li, Vladimir Vatutin, Mei Zhang, “Branching processes in random environment with immigration stopped at zero”, J. Appl. Probab., 57:1 (2020), 237–249 , arXiv: 1905.03535;
V. A. Vatutin, E. E. D'yakonova, “Subcritical Branching Processes in Random Environment with Immigration: Survival of a Single Family”, Theory Probab. Appl., 65:4 (2021), 527–544
26.
V. A. Vatutin, E. E. D'yakonova, “Properties of multitype subcritical branching processes in random environment”, Discrete Math. Appl., 31:5 (2021), 367–382
27.
C. Dong, C. Smadi, V. A. Vatutin, “Critical branching processes in random environment and Cauchy domain of attraction”, ALEA, Lat. Am. J. Probab. Math. Stat., 17 (2020), 877–900 , arXiv: 1910.13190;
28.
V. A. Vatutin, “Asymptotic properties of the number of inversions in a random forest”, Mat. Vopr. Kriptogr., 11:4 (2020), 7–22
29.
W. Hong, M. Liu, V. A. Vatutin, “Limit theorems for supercritical MBPRE with linear fractional offspring distributions”, Markov Processes Relat. Fields, 25:1 (2019), 1–31 , arXiv: 1710.08724
30.
V. A. Vatutin, E. E. D'yakonova, “Multitype weakly subcritical branching processes in random environment”, Discrete Math. Appl., 31:3 (2021), 207–222
31.
V. A. Vatutin, E. E. D'yakonova, “The initial evolution stage of a weakly subcrtical branching process in a random environment”, Theory Probab. Appl., 64:4 (2019), 535–552
32.
V. A. Vatutin, “Asymptotic properties of the inversion number in colored trees”, Mat. Vopr. Kriptogr., 10:4 (2019), 9–24
33.
V. A. Vatutin, E. E. D'yakonova, “Decomposable branching processes with two types of particles”, Discrete Math. Appl., 28:2 (2018), 119–130
34.
M. Liu, V. A. Vatutin, “Reduced critical branching processes for small populations”, Theory Probab. Appl., 63:4 (2019), 648–656 , arXiv: 1801.03217
35.
V. A. Vatutin, W. Hong, Ya. Ji, “Reduced critical Bellman–Harris branching processes for small populations”, Discrete Math. Appl., 28:5 (2018), 319–330
36.
V. A. Vatutin, “Uslovnaya predelnaya teorema dlya blizkikh k kriticheskim vetvyaschikhsya protsessov s finalnym tipom chastits”, Matematicheskie voprosy kriptografii, 9:4 (2018), 53–72
37.
Vladimir Vatutin, Vitali Wachtel, “Multi-type subcritical branching processes in a random environment”, Adv. in Appl. Probab., 50:A (2018), 281–289 , arXiv: 1711.07453
Vincent Bansaye, Vladimir Vatutin, “On the survival probability for a class of subcritical branching processes in random environment”, Bernoulli, 23:1 (2017), 58–88 , arXiv: 1307.3963
V. A. Vatutin, “A Conditional Functional Limit Theorem for Decomposable Branching Processes with Two Types of Particles”, Math. Notes, 101:5 (2017), 778–789
40.
Vladimir Vatutin, Elena Dyakonova, “Path to survival for the critical branching processes in a random environment”, J. Appl. Probab., 54:2 (2017), 588–602 , arXiv: 1603.03199
V. A. Vatutin, E. E. D'yakonova, “Multitype branching processes in random environment: survival probability for the critical case”, Theory Probab. Appl., 62:4 (2018), 506–521
Valentin Topchii, Vladimir Vatutin, “Moments for multitype critical Bellman-Harris processes with long-living particles”, 39-th conference on Stochastic Processes and Their Applications (Moskva, 23–27 iyulya 2017 g.), Moskva, 2017, 116http://www.spa2017.org/images/upload_slides/Book-of-abstracts.pdf
44.
V. A. Vatutin, V. A. Topchii, “Moments of multitype critical Bellman–Harris processes in which tails of life-length distributions of particles have different orders”, Sib. Èlektron. Mat. Izv., 14 (2017), 1248–1264
45.
C. Smadi, V. A. Vatutin, “Reduced two-type decomposable critical branching processes with possibly infinite variance”, Markov Processes Relat. Fields, 22:2 (2016), 311–358 , arXiv: 1508.06653
46.
V. A. Vatutin, E. E. Dyakonova, How many families survive for a long time?, 2016 , 23 pp., arXiv: 1608.08062
47.
Vladimir Vatutin, “Subcritical Branching Processes in Random Environment”, Workshop on Branching Processes and their Applications, WBPA 2015 (Badajoz (Spain), 6–11 April, 2015), Lecture Notes in Stat., 219, eds. I. M. del Puerto et al., 2016, 97–115
V. A. Vatutin, E. E. D'yakonova, “How many families survive for a long time?”, Theory Probab. Appl., 61:4 (2017), 692–711
49.
V. Vatutin, A. Iksanov, V. Topchii, “A two-type Bellman–Harris process initiated by a large number of particles”, Acta Appl. Math., 138:1 (2015), 279–312 , arXiv: 1311.1060
Vladimir Vatutin, Quansheng Liu, “Limit theorems for decomposable branching processes in a random environment”, J. Appl. Probab., 52:3 (2015), 877–893 , arXiv: 1403.0746
V. A. Vatutin, “The structure of decomposable reduced branching processes. II. Functional limit theorems”, Theory Probab. Appl., 60:1 (2016), 103–119
52.
V. A. Topchii, V. A. Vatutin, A. M. Iksanov, “Extinction of a two-type Bellman-Harris process generated by a large number of particles”, XVI-th International Summer Conference on Probability and Statistics, Seminar on Statistical Data Analysis, Workshop on Branching processes and Applications (Pomorie, Bulgaria, 21–29 June 2014), Pliska Stud. Math. Bulgar., 24, 2015, 89–98
53.
V. A. Vatutin, E. E. D'yakonova, “Decomposable Branching Processes with a Fixed Extinction Moment”, Proc. Steklov Inst. Math., 290 (2015), 103–124
54.
Vladimir A. Vatutin, Elena E. Dyakonova, “Extinction of decomposable branching processes”, Discrete Math. Appl., 26:3 (2016), 183–192 , arXiv: 1509.00759
55.
V. I. Afanasyev, Ch. Böinghoff, G. Kersting, and V. A. Vatutin, “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 50:2 (2014), 602–627 , arXiv: 1108.2127
V. A. Vatutin, A. Iksanov, A. V. Marynych, “Weak convergence of finite-dimensional distrinbutions of a number of empty boxes of sieve of Bernoulli”, Theory Probab. Appl., 59:1 (2015), 87–113
57.
V. Vatutin, “Macroscopic and microscopic sutructures of the family tree for a critical decomposable branching process”, Abstracts of the Intrenational Congress of Mathematicians (Seoul, Korea, August 13–21, 2014), Abstracts. Short Communications. Posters Sessions, Seoul ICM 2014, Organizing Committee, Seoul, Korea, 2014, 431
58.
D. Denisov, V. Vatutin, V. Wachtel, “Local probabilities for random walks with negative drift conditioned to stay nonnegative”, Electronic Journal of Probability, 19 (2014), 88 , 17 pp.
V. Bansaye, V. Vatutin, “Random walk with heavy tail and negative drift conditioned by its minimum and final values”, Markov Processes and Related Fields, 20:4 (2014), 633–652 , arXiv: 1312.3306
60.
V. A. Vatutin, “The structure of decomposable reduced branching processes. I. Finitedimensional distributions”, Theory Probab. Appl., 59:4 (2015), 641–662
61.
Vladimir Vatutin, Macroscopic and microscopic structures of the family tree for the decomposable critical branching processes, 2014 , 37 pp., arXiv: 1402.6819v1
62.
S. Sagitov, B. Mehlig B. P. Jagers, V. Vatutin, “Evolutionary branching in a stochastic population model with discrete mutational steps”, Theoretical Population Biology, 83 (2013), 145–154
V. A. Vatutin, V. A. Topchii, “Critical Bellman–Harris branching processes with long-living particles”, Proc. Steklov Inst. Math., 282 (2013), 243–272
64.
V. A. Vatutin, E. E. D'yakonova, S. Sagitov, “Evolution of Branching Processes in a Random Environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242
65.
V. A. Vatutin, V. A. Topchii, “A Key Renewal Theorem for Heavy Tail Distributions with $\beta\in(0,0.5]$”, Theory Probab. Appl., 58:2 (2014), 333–342
66.
A. Iksanov, A. Marynych, V. Vatutin, Weak convergence of finite-dimensional distributions of the number of empty boxes in the Bernoulli sieve, 2013 , 26 pp., arXiv: 1304.4469
67.
V. Vatutin, E. E. Dyakonova, P. Jagers, S. Sagitov, “Decomposable branching processes in a Markovian random environment”, Abstracts of communications of the Russian-Chinese Seminar on the asymptotic methods in probability theory and mathematical statistics (St. Petersburg, 10–14 June, 2013), St. Petersburg State University, St. Petersburg, 2013, 36
68.
Vladimir Vatutin, Quansheng Liu, “Branching processes evolving in asynchronous environments”, Proceedings 59-th ISI World Statistics Congress, 25–30 August 2013, Hong Kong (Hong Kong, 25–30 August 2013), International Statistical Institute, The Hague, The Netherlands, 2013, 1744-1749http://2013.isiproceedings.org/Files/STS033-P3-S.pdf
69.
V. A. Vatutin, “Total Population Size in Critical Branching Processes in a Random Environment”, Math. Notes, 91:1 (2012), 12–21
70.
V. I. Afanasyev, C. Boinghoff, G. Kersting, V. A. Vatutin,, “Limit theorems for weakly subcritical branching processes in random environment”, J. Theoret. Probab., 25:3 (2012), 703–732
V. Vatutin, X Zheng, “Subcritical branching processes in a random environment without the Cramer condition”, Stochastic Process. Appl., 122:7 (2012), 2594-2609
V. A. Vatutin, Q. Liu, “Critical branching process with two types of particles evolving in asynchronous random environments”, Theory Probab. Appl., 57:2 (2013), 279–305
73.
V. Vatutin, V. Wachtel, “Gnedenko-Stone local limit theorems for random walks conditioned to stay positive”, Modern stochastics: Theory and Applications III (Kyiv, Ukraine, September 10–14, 2012), Conference materials, Kievskii universitet, Kiev, 2012, 45http://probability.univ.kiev.ua/msta3conf/datas/users/msta_main.pdf
74.
Vladimir Vatutin, Quansheng Liu, “Branching processes evolving in asynchronous environment”, 8-the World Congress in Probability and Statistics (Istanbul, Turkey, July 09–14, 2012), Programm and Abstracts, Bernoulli Society, 2012, 182–183http://www.worldcong2012.org/ContributedTalks.pdf
75.
V. A. Vatutin, V. A. Topchii, “Dvukhtipnye protsessy Bellmana-Kharrisa, startuyuschie s bolshogo chisla chastits”, Mezhdunarodnaya konferentsiya «Teoriya veroyatnostei i ee prilozheniya» (Moskva, 26–30 iyunya 2012 g.), Tezisy dokladov, eds. A. N. Shiryaev, A. V. Lebedev, LENAND, Moskva, 2012, 24–25
76.
V. Vatutin, E. Dyakonova, P. Jagers, S. Sagitov, “A decomposable branching process in a Markovian environment”, Int. J. Stoch. Anal., 2012 (2012), 694285 , 24 pp.
V. A. Vatutin, “Multitype branching processes with immigration in random environment, and polling systems”, Siberian Advances in Mathematics, 21:1 (2011), 42–72
78.
Y. Hu, V. A. Topchii, V. A. Vatutin, “Branching Random Walk in $\mathbf Z^4$ with Branching at the Origin Only”, Theory Probab. Appl., 56:2 (2012), 193–212
79.
F. C. Klebaner, S. Sagitov, V. A. Vatutin, P. Haccou, P. Jagers, “Stochasticity in the adaptive dynamics of evolution: the bare bones”, J. Biol. Dyn., 5:2 (2011), 147–162
V. A. Vatutin, V. A. Topchiǐ, “Catalytic branching random walks in $\mathbb Z^d$ with branching at the origin”, Siberian Adv. Math., 23:2 (2013), 125–153
81.
V. A. Vatutin, E. E. Dyakonova, “Asymptotic properties of multitype critical branching processes evolving in a random environment”, Discrete Math. Appl., 20:2 (2010), 157–177
82.
V. A. Vatutin, “Polling systems and multitype branching processes in a random environment with final product”, Theory Probab. Appl., 55:4 (2011), 631–660
83.
C. Böinghoff, E. E. Dyakonova, G. Kersting, V. A. Vatutin, “Branching processes in random environment which extinct at a given moment”, Markov Process. Related Fields, 16:2 (2010), 329–350
84.
S. Sagitov, P. Jagers, V. Vatutin, “Coalescent approximation for structured populations in a stationary random environment.”, Theoretical Population Biology, 78:3 (2010), 192–199
V. Vatutin, “A refinement of limit theorems for the critical branching processes in random environment”, Workshop on Branching Processes and their Applications, Lect. Notes Stat. Proc., 197, Part 1, Springer, Berlin, 2010, 3–19
V. A. Vatutin, “Sudden death versus slow extinction for branching processes in random environment”, Proceedings of the 33th SPA conference, Berlin, 2009, 43
88.
V. A. Vatutin, Branching Bellman-Harris processes, Lekts. Kursy NOC, 12, Steklov Math. Inst., RAS, Moscow, 2009 , 112 pp.
89.
V. A. Vatutin, V. I. Vakhtel', “Sudden extinction of the critical branching process in random environment”, Theory Probab. Appl., 54:3 (2010), 466–484
90.
V. A. Vatutin, A. E. Kyprianou, “Branching processes in random environment die slowly”, Fifth Colloquium on Mathematics and Computer Science, Discrete Math. Theor. Comput. Sci. Proc., AI, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, 375–395
91.
V. A. Vatutin, Branching process and their application, Lekts. Kursy NOC, 8, Steklov Math. Inst., RAS, Moscow, 2008 , 108 pp.
92.
V. A. Vatutin, E. E. D'yakonova, “Waves in Reduced Branching Processes in a Random Environment”, Theory Probab. Appl., 53:4 (2009), 679–695
93.
P. Haccou, P. Jagers, V. A. Vatutin, Branching processes: variation, growth, and extinction of populations, Camb. Stud. Adapt. Dyn., Cambridge Univ. Press, Cambridge, 2007 , xii+316 pp.
94.
V. Vatutin, J. Xiong, “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta Math. Sin. (Engl. Ser.), 23:6 (2007), 997–1012
V. A. Vatutin, V. I. Vakhtel', K. Fleischmann, “Critical Galton–Watson process: The maximum of total progenies within a large window”, Theory Probab. Appl., 52:3 (2008), 470–492
96.
V. A. Vatutin, E. E. D'yakonova, “Limit theorems for reduced branching processes in a random environment”, Theory Probab. Appl., 52:2 (2008), 277–302
97.
K. A. Borovkov, V. A. Vatutin, “On the asymptotic behaviour of random recursive trees in random environments”, Adv. in Appl. Probab., 38:4 (2006), 1047–1070
V. A. Vatutin, E. E. D'yakonova, “Branching processes in random environment and “bottlenecks” in evolution of populations”, Theory Probab. Appl., 51:1 (2007), 189–210
99.
K. Fleischmann, V. A. Vatutin, “Multi-scale clustering for a non-Markovian spatial branching process”, J. Theoret. Probab., 18:4 (2005), 719–755
100.
V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Process. Appl., 115:10 (2005), 1658–1676
V. I. Afanasyev, J. Geiger, G. Kersting, V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673
V. Topchii, V. Vatutin, “Two-dimensional limit theorem for a critical catalytic branching random walk”, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, 387–395
103.
V. Vatutin, E. Dyakonova, “Yaglom type limit theorem for branching processes in random environment”, Mathematics and computer science. III, Trends Math., Birkhäuser, Basel, 2004, 375–385
104.
E. E. Dyakonova, J. Geiger, V. A. Vatutin, “On the survival probability and a functional limit theorem for branching processes in random environment”, Markov Process. Related Fields, 10:2 (2004), 289–306
105.
V. A. Vatutin, V. A. Topchii, “Limit theorem for critical catalytic branching random walks”, Theory Probab. Appl., 49:3 (2005), 498–518
106.
V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. II: Finite-dimensional distributions”, Theory Probab. Appl., 49:2 (2005), 275–309
107.
V. A. Vatutin, V. A. Topchiĭ, E. B. Yarovaya, “Catalytic branching random walks and queueing systems with a random number of independently operating servers”, Theory Probab. Math. Statist., 2004, no. 69, 1–15 (2005)
108.
V. Topchii, V. Vatutin, “Individuals at the origin in the critical catalytic branching random walk”, Discrete random walks (Paris, 2003), Discrete Math. Theor. Comput. Sci. Proc., AC, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003, 325–332
109.
J. Geiger, G. Kersting, V. A. Vatutin, “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. H. Poincaré Probab. Statist., 39:4 (2003), 593–620
V. A. Vatutin, “Limit theorem for an intermediate subcritical branching process in a random environment”, Theory Probab. Appl., 48:3 (2004), 481–492
111.
V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. I: limit theorems”, Theory Probab. Appl., 48:2 (2004), 314–336
112.
P. Haccou, and V. Vatutin, “Establishment success and extinction risk in autocorrelated environments”, Theoretical Population Biology, 64:3 (2003), 303–314
V. A. Vatutin, G. I. Ivchenko, Yu. I. Medvedev, V. P. Chistyakov, Teoriya veroyatnostei i matematicheskaya statistika v zadachakh, 2-e izd., Drofa, Moskva, 2003 , 328 pp.
114.
V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes and some queueing systems”, J. Math. Sci. (New York), 111:6 (2002), 3901–3911
V. Vatutin, E. Dyakonova, “Reduced branching processes in random environment”, Mathematics and computer science, II (Versailles, 2002), Trends Math., Birkhäuser, Basel, 2002, 455–467
116.
U. Rösler, V. Topchii, V. Vatutin, “Convergence rate for stable weighted branching processes”, Mathematics and computer science (Versailles, 2002), Trends Math., Birkhäuser, Basel, 2002, 441–453
117.
V. A. Vatutin, U. Rösler, V. A. Topchii, “The Rate of Convergence for Weighted Branching Processes”, Siberian Adv. Math., 12:4 (2002), 57–82
118.
A. Wakolbinger, V. A. Vatutin, K. Fleischmann, “Branching systems with long-living particles at the critical dimension”, Theory Probab. Appl., 47:3 (2003), 429–454
119.
V. A. Vatutin, “Reduced branching processes in random environment: the critical case”, Theory Probab. Appl., 47:1 (2003), 99–113
120.
V. A. Vatutin, E. E. Dyakonova, “The survival probability of a critical multitype Galton-Watson branching process”, J. Math. Sci. (New York), 106:1 (2001), 2752–2759
K. Fleischmann, V. Vatutin A., “An integral test for a critical multitype spatially homogeneous branching particle process and a related reaction-diffusion system”, Probab. Theory Related Fields, 116:4 (2000), 545–572
U. Rösler, V. A. Topchii, V. A. Vatutin, “Convergence conditions for weighted branching processes”, Discrete Math. Appl., 10:1 (2000), 5–21
125.
V. A. Vatutin, K. Fleischmann, “Deviations from typical type proportions in critical multitype Galton–Watson processes”, Theory Probab. Appl., 45:1 (2001), 23–40
126.
V. A. Vatutin, “On the embeddability probability of a random hypergraph with coloured edges into a bipartite graph”, Tr. Diskr. Mat., 3, Fizmatlit, Moscow, 2000, 29–36
127.
K. Fleischmann, V. Vatutin A., “Reduced subcritical Galton–Watson processes in a random environment”, Adv. in Appl. Probab., 31:1 (1999), 88–111
A. Wakolbinger, V. A. Vatutin, “Spatial branching populations with long individual lifetimes”, Theory Probab. Appl., 43:4 (1999), 620–632
129.
M. Drmota, V. Vatutin, “Limiting distributions in branching processes with two types of particles”, Classical and modern branching processes (Minneapolis, MN, 1994), IMA Vol. Math. Appl., 84, Springer, New York, 1997, 89–110
V. A. Vatutin, E. E. D'yakonova, “Critical branching processes in random environment: the probability of extinction at a given moment”, Discrete Math. Appl., 7:5 (1997), 469–496
132.
V. A. Vatutin, V. A. Topchii, “Maximum of the critical Galton–Watson processes and left-continuous random walks”, Theory Probab. Appl., 42:1 (1998), 17–27
133.
K. A. Borovkov, V. A. Vatutin, “On distribution tails and expectations of maxima in critical branching processes”, J. Appl. Probab., 33:3 (1996), 614–622
V. A. Vatutin, V. G. Mikhailov, “On the number of readings of random nonequiprobable files under stable sorting”, Discrete Math. Appl., 6:3 (1996), 207–223
135.
V. A. Vatutin, “The numbers of ascending segments in a random permutation and in one inverse to it are asymptotically independent”, Discrete Math. Appl., 6:1 (1996), 41–52
136.
V. A. Vatutin, V. G. Mikhailov, “Asymptotic properties of matrices related to mappings of partitions”, Theory Probab. Appl., 41:2 (1997), 318–325
137.
V. A. Vatutin, “On the explosiveness of nonhomogeneous age-dependent branching processes”, Theory Probab. Math. Statist., 1996, no. 52, 39–42
138.
V. A. Vatutin, V. G. Mikhailov, “Some estimates for the distribution of the height of a tree for digital searching”, Discrete Math. Appl., 5:4 (1995), 289–300
139.
V. G. Mikhailov, V. A. Vatutin, “Statistical estimation of the entropy of discrete random variables with a large number of outcomes”, Russian Math. Surveys, 50:5 (1995), 963–976
140.
V. A. Vatutin, “On the maximum of a simple random walk”, Theory Probab. Appl., 40:2 (1995), 398–402
141.
V. A. Vatutin, “On the height of the trunk of random rooted trees”, Discrete Math. Appl., 4:4 (1994), 351–360
142.
V. A. Vatutin, “Limit theorems for the number of ascending segments in random permutations generated by sorting algorithms”, Discrete Math. Appl., 4:1 (1994), 31–44
143.
V. A. Vatutin, “Branching processes with final types of particles and random trees”, Theory Probab. Appl., 39:4 (1994), 628–641
144.
V. A. Vatutin, “The total number of particles in a reduced Bellman–Harris branching process”, Theory Probab. Appl., 38:3 (1993), 567–571
145.
V. A. Vatutin, “The distribution of the distance to the root of the minimal subtree containing all the vertices of a given height”, Theory Probab. Appl., 38:2 (1993), 330–341
146.
V. A. Vatutin, A. M. Zubkov, “Branching processes. II”, J. Soviet Math., 67:6 (1993), 3407–3485
V. A. Vatutin, “The limit theorem for Bellman–Harris process with final types”, Proc. Steklov Inst. Math., 200 (1993), 83–92
148.
V. A. Vatutin, S. M. Sagitov, “A critical branching process: the remote past given a favorable present”, Theory Probab. Appl., 36:1 (1991), 86–98
149.
V. A. Vatutin, N. M. Yanev, “A multidimensional critical Galton–Watson branching process with final types”, Discrete Math. Appl., 1:3 (1991), 321–333
150.
V. A. Vatutin, S. M. Sagitov, “Decomposable Critical Branching Bellman–Harris Process with Particles of Two Different Tupes. II”, Theory Probab. Appl., 34:2 (1989), 216–227
151.
V. A. Vatutin, S. M. Sagitov, “Critical decomposable Bellman–Harris processes with two types of particles”, Math. Notes, 43:2 (1988), 157–161
152.
V. A. Vatutin, S. M. Sagitov, “Decomposable Critical Branching Bellman–Harris Process with Particles of Two Different Types. I”, Theory Probab. Appl., 33:3 (1988), 460–472
153.
V. A. Vatutin, “Asymptotic properties of Bellman–Harris critical branching processes starting with a large number of particles”, Stability problems for stochastic models, J. Soviet Math., 47:5 (1989), 2673–2681
154.
N. M. Yanev, V. A. Vatutin, K. V. Mitov, “Critical branching migration processes with an absorbing barrier at zero”, Mathematics and mathematical education (Sl'nchev Bryag, 1986), Publ. House Bulgar. Acad. Sci., Sofia, 1986, 511–517
155.
V. A. Vatutin, S. M. Sagitov, “A decomposable critical Bellman-Harris branching process with two types of particles”, Dokl. AN SSSR, 291:5 (1986), 1040–1043
156.
V. A. Vatutin, “Critical Bellman–Harris branching processes starting with a large number of particles”, Math. Notes, 40:4 (1986), 803–811
157.
V. A. Vatutin, S. M. Sagitov, “A decomposable critical branching process with two types of particles”, Proc. Steklov Inst. Math., 177 (1988), 1–19
158.
V. A. Vatutin, “Critical branching Bellman–Harris process of final type”, Theory Probab. Appl., 31:3 (1987), 428–438
159.
V. A. Vatutin, “Sufficient regularity conditions for Bellman–Harris branching processes”, Theory Probab. Appl., 31:1 (1987), 50–57
160.
V. A. Vatutin, A. M. Zubkov, “Branching processes. I”, J. Soviet Math., 39:1 (1987), 2431–2475
161.
V. A. Vatutin, T. M. Televinova, V. P. Chistyakov, Veroyatnostnye metody v fizicheskikh issledovaniyakh, Nauka, Moskva, 1985 , 208 pp.
162.
K. V. Mitov, V. A. Vatutin, N. M. Yanev, “Critical Galton–Watson processes with decreasing immigration depending on the state of the process”, Serdica, 10:4 (1984), 412–424
163.
K. V. Mitov, V. A. Vatutin, N. M. Yanev, “Continuous-time branching processes with decreasing state-dependent immigration”, Adv. in Appl. Probab., 16:4 (1984), 697–714
V. A. Vatutin, “Branching processes with infinite variance”, Fourth international summer school on probability theory and mathematical statistics (Varna, 1982), Publ. House Bulgar. Acad. Sci., Sofia, 1983, 9–38
165.
V. A. Vatutin, V. G. Mihaǐlov, “Limit theorems for the number of empty cells in the equiprobable scheme of group disposal of particles”, Theory Probab. Appl., 27:4 (1983), 734–743
166.
V. A. Vatutin, “A local limit theorem for critical Bellman–Harris branching processes”, Proc. Steklov Inst. Math., 158 (1983), 9–31
167.
V. A. Vatutin, “On a class of limit theorems for a critical Bellman–Harris branching process”, Theory Probab. Appl., 26:4 (1982), 806–812
168.
V. A. Vatutin, “On a class of the critical multitype Bellman–Harris branching processes”, Theory Probab. Appl., 25:4 (1981), 760–771
169.
V. A. Vatutin, “Distance to the nearest common ancestor in bellman-harris branching processes”, Math. Notes, 25:5 (1979), 378–382
170.
V. A. Vatutin, “A new limit theorem for the critical Bellman–Harris branching process”, Math. USSR-Sb., 37:3 (1980), 411–423
171.
V. A. Vatutin, “Discrete limit distributions of the number of particles in a multitype age-dependent branching processes”, Theory Probab. Appl., 24:3 (1980), 509–520
172.
V. A. Vatutin, “Limit theorem for a critical multitype Bellman–Harris branching process with infinite second moments”, Theory Probab. Appl., 23:4 (1979), 776–788
173.
V. A. Vatutin, “A conditional limit theorem for a critical Branching process with immigration”, Math. Notes, 21:5 (1977), 405–411
174.
V. A. Vatutin, “Limit theorems for critical Markov branching processes with several types of particles and infinite second moments”, Math. USSR-Sb., 32:2 (1977), 215–225
175.
V. A. Vatutin, “Asymptotic behavior of the survival probability for a decomposable branching process with replacements depending on the age of the particles”, Math. USSR-Sb., 31:1 (1977), 95–107
176.
V. A. Vatutin, “A critical Galton–Watson branching process with emigration”, Theory Probab. Appl., 22:3 (1978), 465–481
177.
V. A. Vatutin, “Discrete distributions of the number of particles in critical Bellman–Harris branching processes”, Theory Probab. Appl., 22:1 (1977), 146–152
178.
V. A. Vatutin, “Asymptotic behaviour of the non-extinction probability for a critical branching process”, Theory Probab. Appl., 22:1 (1977), 140–146
179.
V. A. Vatutin, “Uslovie regulyarnosti vetvyaschegosya protsessa Bellmana–Kharrisa”, Dokl. AN SSSR, 230:1 (1976), 15–18
V. A. Vatutin, “A limit theorem for a critical age-dependent branching process with infinite variance”, Theory Probab. Appl., 21:4 (1977), 839–842
181.
V. A. Vatutin, “Critical multitype age-dependent branching process with immigration”, Theory Probab. Appl., 21:2 (1977), 435–442
182.
V. A. Vatutin, “The asymptotic probability of the first degeneration for branching processes with immigration”, Theory Probab. Appl., 19:1 (1974), 25–34
S. A. Aivazyan, V. B. Alekseev, V. A. Vatutin, M. M. Glukhov, A. A. Grusho, V. A. Emelichev, A. M. Zubkov, G. I. Ivchenko, O. M. Kasim-zade, V. A. Kashtanov, I. N. Kovalenko, V. B. Kudryavtsev, V. V. Mazalov, Yu. V. Matiyasevich, Yu. I. Medvedev, V. G. Mikhailov, Yu. L. Pavlov, B. A. Pogorelov, È. A. Primenko, L. Ya. Savel'ev, V. N. Sachkov, S. A. Stepanov, V. P. Chistyakov, V. N. Chubarikov, Diskr. Mat., 28:4 (2016), 3–5
185.
V. A. Vatutin, A. M. Zubkov, “In memoriam of Boris Aleksandrovich Sevastianov”, Theory Probab. Appl., 60:1 (2016), 162–171
186.
V. Vatutin, “Scientific and personal life of B.A. Sevastyanov”, XVI-th International Summer Conference on Probability and Statistics, Seminar on Statistical Data Analysis, Workshop on Branching Processes and Applications (Pomorie, Bulgaria 21–29 June 2014), Pliska Stud. Math. Bulgar., 24, 2015, 5–12
187.
V. A. Vatutin, G. I. Medvedev, Yu. I. Ivchenko, V. P. Chistyakov, Teoriya veroyatnostei i matematicheskaya statistika v zadachakh, Uchebnoe posobie, izd. 4-e ispr., LENAND, M., 2014 , 384 pp.
188.
Vetvyaschiesya protsessy, sluchainye bluzhdaniya i smezhnye voprosy, Sbornik statei. Posvyaschaetsya pamyati chlena-korrespondenta RAN Borisa Aleksandrovicha Sevastyanova, Trudy MIAN, 282, ed. V. A. Vatutin, A. G. Sergeev, MAIK «Nauka/Interperiodika», M., 2013 , 335 pp.
189.
V. A. Vatutin, “On the Bernoulli Society for Mathematical Statistics and Probability”, Teor. Veroyatnost. i Primenen., 55:4 (2010), 820–822
190.
A. A. Borovkov, V. A. Vatutin, V. M. Zolotarev, A. M. Zubkov, I. A. Ibragimov, R. I. Ivanovskaya, V. F. Kolchin, V. P. Maslov, Yu. V. Prokhorov, M. V. Khatuntseva, V. I. Khokhlov, A. S. Holevo, D. M. Chibisov, A. N. Shiryaev, “On the 80th Birthday of B. A. Sevastyanov”, Theory Probab. Appl., 48:4 (2004), 697–702
191.
V. A. Vatutin, “Book review: Bass Richard F. “Diffusions and Eliliptic Operators””, Theory Probab. Appl., 46:4 (2002), 751–752
192.
V. A. Vatutin, “Book review: Le Gall J. “Spatial Branching Processes, Random Snakes and Partial Differential Equations””, Theory Probab. Appl., 46:2 (2002), 380–382
193.
V. A. Vatutin, “Book review: Wimmer G., Altmann G. “Thesaurus of Univariate Discrete Probability Distributions””, Theory Probab. Appl., 45:4 (2001), 725–730
194.
V. A. Vatutin, “Book review: Kolchin V. F. “Random Graphs””, Theory Probab. Appl., 45:2 (2001), 359–361
195.
V. A. Vatutin, “Book review: Habib M., McDiarmid C., Ramirez-Alfonsin J., Reed B. (Eds.) “Probabilistic Methods for Algorithmic Disctrete Mathematics””, Theory Probab. Appl., 44:3 (2000), 613–621
196.
V. A. Vatutin, “Book review: G. George Yin, Qing Zhang “Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach””, Theory Probab. Appl., 44:2 (2000), 428–431
197.
V. A. Vatutin, “Book review: Reiss R.-D., Thomas M. “Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields””, Theory Probab. Appl., 43:4 (1999), 683–684
198.
V. A. Vatutin, “Book review: Maitra P. A . , Sudderth D. William, “Discrete Gambling and Stochastic Games””, Theory Probab. Appl., 42:4 (1998), 714–716
199.
V. A. Vatutin, “Book review: Yor M. “Some aspects of Brownian motion. Part II: Some recent martingale problems””, Teor. Veroyatnost. i Primenen., 42:3 (1997), 641–643
200.
V. A. Vatutin, “Book review: Mittelhammer R. C. “Mathematical Statistics for Economics and Business””, Theory Probab. Appl., 42:1 (1998), 186–188
201.
V. A. Vatutin, “Book review: Jacobs K. “Discrete Stochastics”, Resnick S. “Adventures in Stochastic Process””, Theory Probab. Appl., 41:3 (1997), 609–613
202.
V. A. Vatutin, V. M. Zolotarev, R. I. Ivanovskaya, I. A. Ibragimov, Yu. V. Prokhorov, V. M. Sazonov, B. A. Sevast'yanov, A. D. Solov'ev, D. M. Chibisov, A. N. Shiryaev, “Boris Vladimirovich Gnedenko (1.I.1912-27.XII.1995)”, Theory Probab. Appl., 41:2 (1997), 326–327
203.
V. A. Vatutin, “Book review: Guttorp P. “Statistical Inference for Branching Proceses””, Theory Probab. Appl., 40:3 (1995), 597–598
204.
V. A. Vatutin, “Book review: Johnson N. L., Kotz S. and Kemp A. W. “Univariate Discrete Distributions””, Theory Probab. Appl., 40:2 (1995), 403–408
205.
V. A. Vatutin, “Book review: Yor M. “Some aspects of Brownian motion. Part I: Some special functionals””, Theory Probab. Appl., 39:4 (1994), 720–725
206.
V. A. Vatutin, V. F. Kolchin, “Review of a book, Mahmoud H. M. “Evolution of Random Search Trees””, Diskr. Mat., 5:3 (1993), 157–159
207.
V. A. Vatutin, “Book review: «Probability Theory with Applications» M. M. Rao”, Theory Probab. Appl., 32:4 (1987), 752–756
Биография Б.А.Севастьянова V. A. Vatutin Branching processes and discrete mathematics, a conference dedicated to the 100th
anniversary of Sevastyanov's birth October 3, 2023 10:10
7.
Ветвящиеся процессы — 2 V. A. Vatutin Summer School “Contemporary Mathematics” Named After Vitaly Arnold, 2023 July 21, 2023 12:45
8.
Ветвящиеся процессы V. A. Vatutin Summer School “Contemporary Mathematics” Named After Vitaly Arnold, 2023 July 19, 2023 17:15
Branching processes, random walks, and related problems, Collected papers. Dedicated to the memory of Boris Aleksandrovich Sevastyanov, corresponding member of the Russian Academy of Sciences, Trudy Mat. Inst. Steklova, 282, ed. V. A. Vatutin, A. G. Sergeev, 2013, 335 с. http://mi.mathnet.ru/book1485