Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Vasil'chik, Mikhail Yulianovich

Statistics Math-Net.Ru
Total publications: 17
Scientific articles: 17
Presentations: 1

Number of views:
This page:380
Abstract pages:2669
Full texts:993
References:314

https://www.mathnet.ru/eng/person20319
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/236327

Publications in Math-Net.Ru Citations
2014
1. M. Yu. Vasil'chik, I. M. Pupyshev, “Boundary behavior of functions from Sobolev classes defined on domains with exterior peak”, Mat. Tr., 17:1 (2014),  70–98  mathnet  mathscinet; Siberian Adv. Math., 24:4 (2014), 261–281
2010
2. M. Yu. Vasil'chik, I. M. Pupyshev, “An integral representation and boundary behavior of functions defined in a domain with a peak”, Mat. Tr., 13:1 (2010),  23–62  mathnet  mathscinet; Siberian Adv. Math., 21:2 (2011), 130–159 3
2005
3. M. Yu. Vasil'chik, V. M. Gol'dstein, “Solvability of the Third Boundary-Value Problem in a Domain with a Peak”, Mat. Zametki, 78:3 (2005),  466–468  mathnet  mathscinet  zmath  elib; Math. Notes, 78:3 (2005), 424–426  isi  scopus 2
2003
4. M. Yu. Vasil'chik, “The Boundary Behavior of Functions of Sobolev Spaces Defined on a Planar Domain with a Peak Vertex on the Boundary”, Mat. Tr., 6:1 (2003),  3–27  mathnet  mathscinet  zmath; Siberian Adv. Math., 14:2 (2004), 92–115 3
1999
5. M. Yu. Vasil'chik, “On the differentiability almost everywhere of functions in Besov spaces”, Sibirsk. Mat. Zh., 40:4 (1999),  738–744  mathnet  mathscinet  zmath; Siberian Math. J., 40:4 (1999), 622–627  isi 1
1996
6. M. Yu. Vasil'chik, “Some applications of integral representations to studying boundary properties of differentiable functions”, Trudy Inst. Mat. SO RAN, 31 (1996),  58–99  mathnet  mathscinet  zmath
7. M. Yu. Vasil'chik, “A conversible characteristic for the traces of functions in Sobolev spaces on the piecewise smooth boundary of a plane domain”, Trudy Inst. Mat. SO RAN, 31 (1996),  40–57  mathnet  mathscinet  zmath 1
1995
8. M. Yu. Vasil'chik, “Boundary properties of functions of the Sobolev space defined in a planar domain with angular points”, Sibirsk. Mat. Zh., 36:4 (1995),  787–804  mathnet  mathscinet  zmath; Siberian Math. J., 36:4 (1995), 677–693  isi 8
1992
9. M. Yu. Vasil'chik, “On necessary and sufficient conditions for the trace of functions from the Sobolev space on the boundary of a plane domain with a non-Lipschitz boundary”, Trudy Inst. Mat. SO RAN, 21 (1992),  5–29  mathnet  mathscinet  zmath
1991
10. M. Yu. Vasil'chik, “The traces of functions in a Sobolev space defined in a plane domain with a non-Lipschitzian boundary”, Dokl. Akad. Nauk SSSR, 319:2 (1991),  275–277  mathnet  mathscinet  zmath; Dokl. Math., 44:1 (1992), 96–99
1989
11. M. Yu. Vasil'chik, “Traces of functions in Sobolev spaces $W_p^1$, defined in domains with non-Lipschitz boundary”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 14 (1989),  9–45  mathnet  mathscinet  zmath
1986
12. M. Yu. Vasil'chik, V. M. Gol'dstein, “Quasiconformal mapping of a ridge onto a “spire””, Sibirsk. Mat. Zh., 27:4 (1986),  20–34  mathnet  mathscinet  zmath; Siberian Math. J., 27:4 (1986), 486–498  isi 1
1982
13. M. Yu. Vasil'chik, “A symmetric mapping of spatial domains that are infinitely near a ball, with an asymptotically minimal coefficient of quasiconformality”, Sibirsk. Mat. Zh., 23:4 (1982),  29–42  mathnet  mathscinet  zmath; Siberian Math. J., 23:4 (1982), 472–483  isi
1979
14. M. Yu. Vasil'chik, “The asymptotic behavior of minimal quasiconformality coefficients for space domains”, Dokl. Akad. Nauk SSSR, 249:4 (1979),  777–780  mathnet  mathscinet  zmath
15. M. Yu. Vasil'chik, “Estimates of the order of proximity to unity of the distortion coefficient of domains infinitely close to the unit ball”, Sibirsk. Mat. Zh., 20:5 (1979),  964–977  mathnet  mathscinet  zmath; Siberian Math. J., 20:5 (1979), 681–690  isi
16. M. Yu. Vasil'chik, “Errata: “The lower bound of the distortion coefficient for infinitely close domains” [Sibirsk. Mat. Z. 19 (1978), no. 3, 547–554]”, Sibirsk. Mat. Zh., 20:4 (1979),  924  mathnet  mathscinet  zmath; Siberian Math. J., 20:4 (1979), 655
1978
17. M. Yu. Vasil'chik, “The lower bound of the distortion coefficient for infinitely close domains”, Sibirsk. Mat. Zh., 19:3 (1978),  547–554  mathnet  mathscinet  zmath; Siberian Math. J., 19:3 (1978), 383–389  isi 1

Presentations in Math-Net.Ru
1. Граничное поведение функций класса Соболева, определенных в областях с внешним пиком
M. Yu. Vasil'chik, I. M. Pupyshev
Summer school "Geometric Control Theory and Analysis on Metric Structures"
July 26, 2014 16:20   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024