Symmetries and integrability of differential equations,
method of differential constraints in constructing multi-phase solutions of evolution equations,
equivalence of ordinary differential equations.
Main publications:
Bagderina Yu. Yu., “Invariants of a family of scalar second-order ordinary differential equations for Lie symmetries and first integrals”, Journal Physics A: Math. Theor., 49:15 (2016), 155202
Bagderina Yu. Yu., Tarkhanov N. N., “Solution of the equivalence problem for the third Painlevé equation”, Journal of Mathematical Physics, 56:1 (2015), 013507
Bagderina Yu. Yu., “Linearization criteria for a system of two second-order ordinary differential equations”, Journal Physics A: Math. Theor., 43:46 (2010), 465201
Bagderina Yu. Yu., “Invariants of a family of third-order ordinary differential equations”, Journal Physics A: Math. Theor., 42:8 (2009), 085204
Bagderina Yu. Yu., “Ratsionalnye resheniya evolyutsionnykh uravnenii pyatogo poryadka dlya opisaniya voln na vode”, Prikl. matematika i mekhanika, 72:2 (2008), 288–301
Yu. Yu. Bagderina, “Point equivalence of second-order ordinary differential equations to the fifth Painlevé equation with one and two nonzero parameters”, Theoret. and Math. Phys., 202:3 (2020), 295–308
2021
2.
Yu. Yu. Bagderina, “Eigenfunctions of Ordinary Differential Euler Operators”, J. Math. Sci. (N. Y.), 252:2 (2021), 125–134
2019
3.
Yu. Yu. Bagderina, “Necessary conditions of point equivalence of second-order ODEs to the sixth Painlevé equation”, J. Math. Sci. (N. Y.), 242:5 (2019), 595–607
2017
4.
Yu. Yu. Bagderina, “Rational integrals of the second degree of two-dimentional geodesic equations”, Sib. Èlektron. Mat. Izv., 14 (2017), 33–40
2019
5.
Yu. Yu. Bagderina, “Higher-order Bessel equations integrable in elementary functions”, Journal of Mathematical Sciences, 241:4 (2019), 379–395
2016
6.
Yu. Yu. Bagderina, “Group classification of projective type second-order ordinary differential equations”, Journal of Applied and Industrial Mathematics, 10:1 (2016), 37–50
7.
Yu. Yu. Bagderina, “Invariants of a family of scalar second-order ordinary differential equations for Lie symmetries and first integrals”, Journal Physics A: Mathematical and Theoretical, 49:15 (2016), 155202 , 32 pp.
Yu. Yu. Bagderina, “Equivalence of second-order ordinary differential equations to Painlevé equations”, Theoret. and Math. Phys., 182:2 (2015), 211–230
9.
Yu. Yu. Bagderina, “Equivalence of second-order ODEs to equations of first Painlevé equation type”, Ufa Math. Journal, 7:1 (2015), 19–30
10.
Yu. Yu. Bagderina, N. N. Tarkhanov, “Solution of the equivalence problem for the third Painlevé equation”, Journal of Mathematical Physics, 56:1 (2015), 013507 , 15 pp.
Yu. Yu. Bagderina, “Symmetries and invariants of the systems of two linear second-order ordinary differential equations”, Communications in Nonlinear Science and Numerical Simulation, 19:10 (2014), 3513–3522
Yu. Yu. Bagderina, “Differential invariants and first integrals of the system of two linear second-order ordinary differential equations”, Progress in Applied Mathematics, 7:1 (2014), 20–35
13.
Yu. Yu. Bagderina, N. N. Tarkhanov, “Differential invariants of a class of Lagrangian systems with two degrees of freedom”, Journal of Mathematical Analysis and Applcations, 410:2 (2014), 733–749
Yu. Yu. Bagderina, “Invariants of a family of scalar second-order ordinary differential equations”, Journal Physics A: Mathematical and Theoretical, 46:29 (2013), 295201 , 36 pp.
Yu. Yu. Bagderina, “Equivalence of linear systems of two second-order ordinary differential equations”, Progress in Applied Mathematics, 1:1 (2011), 106–121
2010
18.
Yu. Yu. Bagderina, “Linearization criteria for a system of two second-order ordinary differential equations”, Journal Physics A: Mathematical and Theoretical, 43:46 (2010), 465201 , 14 pp.
Yu. Yu. Bagderina, “Invariants of a family of third-order ordinary differential equations”, Journal Physics A: Mathematical and Theoretical, 42:8 (2009), 085204 , 21 pp.
Yu. Yu. Bagderina, “Rational solutions of fifth-order evolutionary equations for describing waves on water”, Journal of Applied Mathematics and Mechanics, 72:2 (2008), 180–191
L. A. Kalyakin, Yu. Yu. Bagderina, “Asymptotics for the solution of averaged equations for the system of coupled oscillators”, J. Math. Sci., 151:1 (2008), 2699–2709
Yu. Yu. Bagderina, R. K. Gazizov, “Approximately Invariant Solutions of Differential Equations with a Small Parameter”, Differential Equations, 41:3 (2005), 364–372
28.
L. A. Kalyakin, Yu. Yu. Bagderina, “Asymptotics of Bounded-at-Infinity Solutions of the Principal Resonance Equation”, Math. Notes, 78:1 (2005), 76–87
Yu. Yu. Bagderina, A. P. Chupakhin, “Invariant and Partially Invariant Solutions of the Green-Naghdi Equations”, Journal of Applied Mechanics and Technical Physics, 46:6 (2005), 791–799
31.
Yu. Yu. Bagderina, A. P. Chupakhin, “Invariant and partially invariant solutions of the Green–Naghdi equations”, J. Appl. Mech. Tech. Phys., 46:6 (2005), 791–799
2004
32.
Yu. Yu. Bagderina, R. K. Gazizov, “Invariant representation and symmetry reduction for differential equations with a small parameter”, Communications in Nonlinear Science and Numerical Simulation, 9:1 (2004), 3–11
Yu. Yu. Bagderina, “Approximate Lie group analysis and solutions of 2D nonlinear diffusion-convection equations”, Journal Physics A: Mathematical and General, 36:3 (2003), 753–764
34.
Yu. Yu. Bagderina, “Invariants of multi-parameter approximate transformation groups”, Journal of Mathematical Analysis and Applcations, 281:2 (2003), 539–551
2002
35.
Yu. Yu. Bagderina, “Solution of ordinary differential equations with a large Lie symmetry group”, Nonlinear Dynamics, 30:3 (2002), 287–294