Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Oseledets, Ivan Valer'evich

Total publications: 22 (22)
in MathSciNet: 5 (5)
in zbMATH: 4 (4)
in Web of Science: 8 (8)
in Scopus: 9 (9)
Cited articles: 15
Citations: 139
Presentations: 18

Number of views:
This page:4123
Abstract pages:6245
Full texts:3020
References:524
Doctor of physico-mathematical sciences (2012)
Speciality: 01.01.07 (Computing mathematics)
E-mail:
Website: http://spring.inm.ras.ru/osel

https://www.mathnet.ru/eng/person20255
https://ru.wikipedia.org/wiki/Oseledets,_Ivan_Valerevich
List of publications on Google Scholar
https://zbmath.org/authors/ai:oseledets.ivan-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/737687
https://elibrary.ru/author_items.asp?authorid=156859
https://orcid.org/0000000320712163
https://www.webofscience.com/wos/author/record/E-2146-2014
https://www.scopus.com/authid/detail.url?authorId=8529104000
https://www.researchgate.net/profile/Ivan-Oseledets

Full list of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

Articles

1. Ivan V. Oseledets, Maxim V. Rakhuba, André Uschmajew, “Local convergence of alternating low-rank optimizationmethods with overrelaxation”, Numer. Linear Algebra Appl., 30:3 (2023), 2459 , 15 pp.  mathnet  crossref 1
2. A. Chertkov, O. Tsymboi, M. Pautov, I. Oseledets, “Translate your gibberish: black-box adversarial attack on machine translation systems”, Issledovaniya po prikladnoi matematike i informatike. II–2, Zap. nauchn. sem. POMI, 530, POMI, Spb., 2023, 96–112  mathnet
3. V. S. Fanaskov, I. V. Oseledets, “Spectral neural operators”, Dokl. Math., 108:suppl. 2 (2023), S226–S232  mathnet  crossref  crossref  elib
4. S. A. Budennyy, V. D. Lazarev, N. N. Zakharenko, A. N. Korovin, O. A. Plosskaya, D. V. Dimitrov, V. S. Akhripkin, I. V. Pavlov, I. V. Oseledets, I. S. Barsola, I. V. Egorov, A. A. Kosterina, L. E. Zhukov, “eco2AI: carbon emissions tracking of machine learning models as the first step towards sustainable AI”, Dokl. Math., 106:suppl. 1 (2022), S118–S128  mathnet  crossref  crossref  elib
5. E. V. Burnaev, A. V. Bernshtein, V. V. Vanovskiy, A. A. Zaytsev, A. M. Bulkin, V. Yu. Ignatiev, D. G. Shadrin, S. V. Illarionova, I. V. Oseledets, A. Yu. Mikhalev, A. A. Osiptsov, A. A. Artemov, M. G. Sharaev, I. E. Trofimov, “Fundamental research and developments in the field of applied artificial intelligence”, Dokl. Math., 106:suppl. 1 (2022), S14–S22  mathnet  crossref  crossref  elib
6. D. Yu. Turdakov, A. I. Avetisyan, K. V. Arkhipenko, A. V. Antsiferova, D. S. Vatolin, S. S. Volkov, A. V. Gasnikov, D. A. Devyatkin, M. D. Drobyshevskiy, A. P. Kovalenko, M. I. Krivonosov, N. V. Lukashevich, V. A. Malykh, S. I. Nikolenko, I. V. Oseledets, A. I. Perminov, I. V. Sochenkov, M. M. Tihomirov, A. N. Fedotov, M. Yu. Khachay, “Trusted artificial intelligence: challenges and promising solutions”, Dokl. Math., 106:suppl. 1 (2022), S9–S13  mathnet  crossref  crossref  elib
7. S. A. Matveev, I. V. Oseledets, E. S. Ponomarev, A. V. Chertkov, “Overview of visualization methods for artificial neural networks”, Comput. Math. Math. Phys., 61:5 (2021), 887–899  mathnet  crossref  crossref  isi  elib  scopus
8. A. I. Boyko, I. V. Oseledets, G. Ferrer, “TT-QI: Faster value iteration in tensor train format for stochastic optimal control”, Comput. Math. Math. Phys., 61:5 (2021), 836–846  mathnet  crossref  crossref  isi  elib  scopus
9. I. V. Oseledets, P. V. Kharyuk, “Structuring data with block term decomposition: decomposition of joint tensors and variational block term decomposition as a parametrized mixture distribution model”, Comput. Math. Math. Phys., 61:5 (2021), 816–835  mathnet  crossref  crossref  isi  elib  scopus
10. J. V. Gusak, T. K. Daulbaev, I. V. Oseledets, E. S. Ponomarev, A. S. Cichocki, “Reduced-order modeling of deep neural networks”, Comput. Math. Math. Phys., 61:5 (2021), 774–785  mathnet  crossref  crossref  isi  elib  scopus
11. N. L. Zamarashkin, I. V. Oseledets, E. E. Tyrtyshnikov, “New applications of matrix methods”, Comput. Math. Math. Phys., 61:5 (2021), 669–673  mathnet  crossref  crossref  isi  elib  scopus
12. P. V. Kharyuk, I. V. Oseledets, V. L. Ushakov, “Compression of fMRI data using wavelet tensor train decomposition”, Num. Meth. Prog., 15:4 (2014), 669–676  mathnet
13. P. V. Kharyuk, I. V. Oseledets, “WTT decomposition for the compression of array's families and its application to image processing”, Num. Meth. Prog., 15:2 (2014), 229–238  mathnet
14. A. Yu. Mikhalev, I. V. Oferkin, I. V. Oseledets, A. V. Sulimov, E. E. Tyrtyshnikov, V. B. Sulimov, “Application of the multicharge approximation for large dense matrices in the framework of the polarized continuum solvent model”, Num. Meth. Prog., 15:1 (2014), 9–21  mathnet
15. T. G. Saluev, I. V. Oseledets, R. Yu. Fadeev, “Web-framework for creation of interactive training courses on computational methods”, Artificial Intelligence and Decision Making, 2014, no. 1, 46–51  mathnet  elib
16. I. V. Oseledets, S. L. Stavtsev, E. E. Tyrtyshnikov, “Integration of oscillating functions in a quasi-three-dimensional electrodynamic problem”, Comput. Math. Math. Phys., 49:2 (2009), 292–303  mathnet  crossref  mathscinet  zmath  isi  scopus
17. I. V. Oseledets, “Lower bounds for separable approximations of the Hilbert kernel”, Sb. Math., 198:3 (2007), 425–432  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
18. I. V. Oseledets, D. V. Savostyanov, “Minimization methods for approximating tensors and their comparison”, Comput. Math. Math. Phys., 46:10 (2006), 1641–1650  mathnet  crossref  mathscinet  scopus
19. I. V. Oseledets, “Use of Divided Differences and $B$ Splines for Constructing Fast Discrete Transforms of Wavelet Type on Nonuniform Grids”, Math. Notes, 77:5 (2005), 686–694  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
20. I. V. Oseledets, E. E. Tyrtyshnikov, “Approximate inversion of matrices in the process of solving a hypersingular integral equation”, Comput. Math. Math. Phys., 45:2 (2005), 302–313  mathnet  mathscinet  zmath  elib  elib

Preprints

21. A. V. Chashchin, M. A. Botchev, I. V. Oseledets, G. V. Ovchinnikov, “Predicting dynamical system evolution with residual neural networks”, Keldysh Institute preprints, 2019  mathnet  crossref
22. I. V. Oseledets, M. A. Botchev, A. M. Katrutsa, G. V. Ovchinnikov, “How to optimize preconditioners for the conjugate gradient method: a stochastic approach”, Keldysh Institute preprints, 2018  mathnet  crossref  elib; ;

Presentations in Math-Net.Ru
1. Квантизация больших языковых моделей с переопределенным базисом
B. S. Kashin, I. V. Oseledets
Annual Session of Steklov Mathematical Institute (Best results 2024)
November 20, 2024 11:15
2. How maths can help in the development and research of artificial intelligence algorithms
I. V. Oseledets
Mathematical Foundations of Artificial Intelligence
February 28, 2024 17:00   
3. Математика и ИИ
I. V. Oseledets
Main scientific seminar of the Innopolis University «Innopolis. Science»
February 8, 2024 16:45   
4. Approximation of high-dimensional functions with tensors and neural networks
I. V. Oseledets
International Conference “Nonlinear Approximation and Discretization” dedicated to the 70-th anniversary of Professor V.N. Temlyakov
October 31, 2023 15:50   
5. Вычислительные технологии решения многомерных задач, искусственный интеллект, нейросеть ChatGPT
I. V. Oseledets

October 10, 2023 12:30   
6. Practical challenges in non-convex optimization
I. V. Oseledets
Beijing–Moscow Mathematics Colloquium
March 24, 2023 11:00
7. Обзор современных проблем искусственного интеллекта
I. V. Oseledets

October 13, 2022   
8. Методы машинного обучения для решения задач математического моделирования и обратных задач
I. V. Oseledets

August 12, 2021 18:50
9. Геометрия в моделях машинного обучения
I. V. Oseledets
Colloquium of the Faculty of Computer Science
April 27, 2021 16:20   
10. Modern problems of machine learning and big data
I. V. Oseledets
Actual Problems of Applied Mathematics
May 29, 2020   
11. Глубокие нейронные сети и их связь с динамическими системами и аппроксимацией многомерных функций
I. V. Oseledets
Dynamical systems and differential equations
March 16, 2020 18:30
12. Deep Learning and Tensor Networks
I. V. Oseledets

October 27, 2017 16:15   
13. Tensor networks: review and open problems
I. V. Oseledets

May 18, 2017 16:15   
14. Computational tensor methods in multidimensional stochastic problems. Lecture 4
I. V. Oseledets
School on Stochastics and Financial Mathematics
September 8, 2015 18:00   
15. Computational tensor methods in multidimensional stochastic problems. Lecture 3
I. V. Oseledets
School on Stochastics and Financial Mathematics
September 8, 2015 17:00   
16. Computational tensor methods in multidimensional stochastic problems. Lecture 2
I. V. Oseledets
School on Stochastics and Financial Mathematics
September 7, 2015 18:00   
17. Computational tensor methods in multidimensional stochastic problems. Lecture 1
I. V. Oseledets
School on Stochastics and Financial Mathematics
September 7, 2015 17:00   
18. Вычислительные тензорные методы и различные приложения
I. V. Oseledets
Mathematical Seminar
October 1, 2013   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024