Mathematical topics on fluid dynamics and phase transitions.
Main publications:
V. N. Starovoitov. Predstavlenie resheniya zadachi o dvizhenii tochechnogo vikhrya v idealnoi zhidkosti. Sibirskii matematicheskii zhurnal, 1994, t. 35, # 2, s. 446–458.
V. N. Starovoitov. Model dvizheniya dvukhkomponentnoi zhidkosti s uchetom kapillyarnykh sil. Zhurnal prikladnoi mekhaniki i tekhnicheskoi fiziki (PMTF), 1994, t. 35, # 6, s. 85–92.
V. N. Starovoitov. On the Stefan problem with different phase densities. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 2000, v. 80, No. 2, p. 103–111.
J. A. San Martin, V. N. Starovoitov, M. Tucsnak. Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Archive for Rational Mechanics and Analysis, 2002, v. 161, No. 2, p. 113–147.
V. N. Starovoitov. Behavior of a rigid body in an incompressible viscous fluid near a boundary. In: Free boundary problems in continuum mechanics: theory and applications. International Series of Numerical Mathematics, 2003, Vol. 147, Birkhäuser Verlag, Basel, p. 313–327.
V. N. Starovoitov, “Solvability of a regularized boundary value problem of chaotic dynamics of a polymer molecule”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 1597–1604
2022
2.
V. N. Starovoitov, B. N. Starovoitova, “Homogenization of a periodic elastic structure saturated with a Maxwell fluid”, Sib. Zh. Ind. Mat., 25:3 (2022), 170–188
2021
3.
V. N. Starovoitov, “Solvability of a boundary value problem of chaotic dynamics of polymer molecule in the case of bounded interaction potential”, Sib. Èlektron. Mat. Izv., 18:2 (2021), 1714–1719
4.
V. N. Starovoitov, “Unique solvability of a linear parabolic problem with nonlocal time data”, Sibirsk. Mat. Zh., 62:2 (2021), 417–421; Siberian Math. J., 62:2 (2021), 337–340
A. A. Mestnikova, V. N. Starovoitov, B. N. Starovoitova, “The steady problem of the motion of a rigid ball in a Stokes–Poiseuille flow: differentiability of the solution with respect to the ball position”, Sib. Èlektron. Mat. Izv., 14 (2017), 864–876
7.
V. N. Starovoitov, B. N. Starovoitova, “Solvability of the unsteady problem of the motion of a rigid body in a flow of a viscous incompressible fluid in a pipe of arbitrary section”, Sib. Zh. Ind. Mat., 20:3 (2017), 80–91; J. Appl. Industr. Math., 11:3 (2017), 453–462
2015
8.
V. N. Starovoitov, “Steady motion of a ball in a Stokes–Poiseuille flow”, Sib. Zh. Ind. Mat., 18:3 (2015), 76–85; J. Appl. Industr. Math., 9:4 (2015), 588–597
V. N. Starovoitov, “Optimal control of cylinder rotation in a viscous fluid”, Sib. Zh. Ind. Mat., 16:1 (2013), 95–105; J. Appl. Industr. Math., 7:2 (2013), 259–268
V. N. Starovoitov, B. N. Starovoitova, “Mathematical Model of Dynamics of an Elastic Body in a Viscous Incompressible Fluid”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:4 (2009), 76–89
2006
11.
V. N. Starovoitov, “Problem on a drift of a rigid body in a viscous fluid”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:2 (2006), 88–102
2003
12.
V. N. Starovoitov, “Non-uniqueness of the solution to the problem of a motion of a rigid body in a viscous incompressible fluid”, Zap. Nauchn. Sem. POMI, 306 (2003), 199–209; J. Math. Sci. (N. Y.), 130:4 (2005), 4893–4898
V. N. Starovoitov, “The dynamics of a two-component fluid in the presence of capillary forces”, Mat. Zametki, 62:2 (1997), 293–305; Math. Notes, 62:2 (1997), 244–254
V. N. Starovoitov, “Model of the motion of a two-component liquid with allowance of capillary forces”, Prikl. Mekh. Tekh. Fiz., 35:6 (1994), 85–92; J. Appl. Mech. Tech. Phys., 35:6 (1994), 891–897
V. N. Starovoitov, “Uniqueness of a solution to the problem of evolution of a point vortex”, Sibirsk. Mat. Zh., 35:3 (1994), 696–701; Siberian Math. J., 35:3 (1994), 625–630
V. N. Starovoitov, “Representation of a solution to the problem of evolution of a point vortex in an ideal fluid”, Sibirsk. Mat. Zh., 35:2 (1994), 446–458; Siberian Math. J., 35:2 (1994), 403–415
P. I. Plotnikov, V. N. Starovoitov, “The Stefan problem with surface tension as a limit of the phase field model”, Differ. Uravn., 29:3 (1993), 461–471; Differ. Equ., 29:3 (1993), 395–404