Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Lerner, Moisei Efimovich


https://www.mathnet.ru/eng/person19072
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/231505

Publications in Math-Net.Ru Citations
2005
1. M. E. Lerner, “Разрешимость существенно нелокальной краевой задачи для линейного гиперболического уравнения без младших производных”, Matem. Mod. Kraev. Zadachi, 3 (2005),  159–160  mathnet
2003
2. M. E. Lerner, O. A. Repin, “A boundary value problem for mixed-type equations in domains with multiply connected hyperbolicity subdomains”, Sibirsk. Mat. Zh., 44:1 (2003),  160–177  mathnet  mathscinet  zmath; Siberian Math. J., 44:1 (2003), 132–146  isi
2002
3. M. E. Lerner, “Существенно нелокальные краевые задачи для гиперболических уравнений”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 16 (2002),  36–39  mathnet 1
2001
4. M. E. Lerner, O. A. Repin, “Nonlocal Boundary Value Problems in a Vertical Half-Strip for a Generalized Axisymmetric Helmholtz Equation”, Differ. Uravn., 37:11 (2001),  1562–1564  mathnet  mathscinet; Differ. Equ., 37:11 (2001), 1640–1642 13
2000
5. M. E. Lerner, O. A. Repin, “Boundary value problems for a mixed-type equation in domains with a doubly connected hyperbolicity subdomain”, Differ. Uravn., 36:10 (2000),  1361–1364  mathnet  mathscinet; Differ. Equ., 36:10 (2000), 1502–1506 1
6. M. E. Lerner, O. A. Repin, “Essentially nonlocal boundary value problem for a certain partial differential equation”, Mat. Zametki, 67:3 (2000),  478–480  mathnet  mathscinet  zmath; Math. Notes, 67:3 (2000), 406–409  isi 2
1999
7. M. E. Lerner, O. A. Repin, “On Frankl'-type problems for some elliptic equations with degeneration of various types”, Differ. Uravn., 35:8 (1999),  1087–1093  mathnet  mathscinet; Differ. Equ., 35:8 (1999), 1098–1104 7
8. M. E. Lerner, O. A. Repin, “On a problem with two nonlocal boundary conditions for an equation of mixed type”, Sibirsk. Mat. Zh., 40:6 (1999),  1260–1275  mathnet  mathscinet  zmath; Siberian Math. J., 40:6 (1999), 1064–1078  isi 8
9. M. E. Lerner, “Substantively nonlocal boundary value problem for elliptical, parabolic and hyperbolic equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 7 (1999),  178–180  mathnet 1
1998
10. M. E. Lerner, “On the formulation of boundary value problems for equations of mixed parabolic-hyperbolic type”, Differ. Uravn., 34:10 (1998),  1430–1432  mathnet  mathscinet; Differ. Equ., 34:10 (1998), 1433–1436
11. O. A. Repin, M. E. Lerner, “О задаче Дирихле для обобщенного двуосесимметрического уравнения Гельмгольца в первом квадранте”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 6 (1998),  5–8  mathnet  elib 9
1996
12. M. E. Lerner, “The principles of maximum and the methods of statement, boundary value problem for hyperbolic-type and equations of mixed type in bounded simply-connected and multi-connected domain where the boundary is free”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4 (1996),  5–24  mathnet  elib 2
1992
13. M. E. Lerner, “On a problem for a model equation of mixed elliptic-parabolic-hyperbolic type in a domain with a doubly connected subdomain of hyperbolicity”, Differ. Uravn., 28:8 (1992),  1456–1459  mathnet  mathscinet  zmath 1
1991
14. M. E. Lerner, “On the formulation and solvability of a class of boundary value problems for the Lavrent'ev–Bitsadze equation”, Dokl. Akad. Nauk SSSR, 317:3 (1991),  561–565  mathnet  mathscinet  zmath; Dokl. Math., 43:2 (1991), 451–455 2
15. M. E. Lerner, “Qualitative properties of the Riemann function”, Differ. Uravn., 27:12 (1991),  2106–2120  mathnet  mathscinet; Differ. Equ., 27:12 (1991), 1495–1508 5
1989
16. M. E. Lerner, “Two new qualitative properties of the Riemann function”, Dokl. Akad. Nauk SSSR, 307:4 (1989),  807–811  mathnet  mathscinet  zmath; Dokl. Math., 40:1 (1990), 166–171 1
17. M. E. Lerner, “Solvability of a boundary value problem for hyperbolic equations in nonclassical domains”, Differ. Uravn., 25:4 (1989),  704–716  mathnet  mathscinet; Differ. Equ., 25:4 (1989), 487–496 2
1988
18. M. E. Lerner, “Solvability of a boundary value problem for hyperbolic equations in nonclassical domains”, Dokl. Akad. Nauk SSSR, 300:3 (1988),  546–550  mathnet  mathscinet  zmath; Dokl. Math., 37:3 (1988), 696–699
1986
19. M. E. Lerner, “Maximum principles for equations of hyperbolic and mixed types in nonclassical domains”, Dokl. Akad. Nauk SSSR, 287:3 (1986),  550–554  mathnet  mathscinet  zmath 1
20. M. E. Lerner, “Maximum modulus principles for hyperbolic equations and systems of equations in nonclassical domains”, Differ. Uravn., 22:5 (1986),  848–858  mathnet  mathscinet 2
1977
21. M. E. Lerner, “Maximum and uniqueness principles for the solutions of boundary value problems of certain equations of mixed type”, Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 2,  71–83  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 21:2 (1977), 54–61
1974
22. M. E. Lerner, “The Tricomi problem with generalized gluing conditions”, Dokl. Akad. Nauk SSSR, 218:1 (1974),  24–27  mathnet  mathscinet  zmath 1
1969
23. M. E. Lerner, “Maximum principles for second order equations of mixed elliptic-hyperbolic type”, Dokl. Akad. Nauk SSSR, 185:5 (1969),  991–994  mathnet  mathscinet  zmath 1
24. M. E. Lerner, “The extremal property of the solutions of a certain class of hyperbolic equations”, Dokl. Akad. Nauk SSSR, 184:6 (1969),  1281–1283  mathnet  mathscinet  zmath
1967
25. M. E. Lerner, “A maximum principle for hyperbolic equations and its application to equations of mixed type”, Dokl. Akad. Nauk SSSR, 177:6 (1967),  1269–1272  mathnet  mathscinet  zmath
26. M. E. Lerner, S. P. Pul'kin, “A singular problem with F. I. Frankl' and F. Tricomi conditions”, Dokl. Akad. Nauk SSSR, 174:1 (1967),  24–26  mathnet  mathscinet  zmath
1966
27. M. E. Lerner, S. P. Pul'kin, “Uniqueness of a solution of problems with Frankl' and Tricomi conditions for the general Lavrent'ev–Bicadze equation”, Differ. Uravn., 2:9 (1966),  1255–1263  mathnet  mathscinet  zmath 4

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025