Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
2024 |
1. |
S.V. Talalov, “The system of the vortex-like structures: The viewpoint on a turbulence
modeling”, Chaos, Solitons and Fractals, 185 (2024), 115097-1 - 115097-6 |
|
2023 |
2. |
S. V. Talalov, “Towards quantum turbulence theory: A simple model
with interaction of vortex loops”, Physical Review Fluids, 8 (2023), 034607-1 - 034607-12
|
1
[x]
|
3. |
S.V. Talalov, “The turbulence development at its initial
stage: A scenario based on the idea of
vortices decay”, Physics of Fluids, 35 (2023), 045132-1 - 045132-7
|
1
[x]
|
|
2022 |
4. |
S. V. Talalov, “Small oscillations of a vortex ring: Hamiltonian formalism and
quantization”, European Journal of Mechanics / B Fluids, 92 (2022), 100 – 106 , arXiv: math-ph/2112.04859
|
4
[x]
|
5. |
S. V. Talalov, “Closed Vortex Filament in a Cylindrical Domain: Circulation Quantization”, Physics of Fluids, 34 (2022), 041702-1 – 041702-4 , arXiv: quant-ph/2201.12357
|
4
[x]
|
6. |
S. V. Talalov, “The vortex filament dynamics: new viewpoint on the problems of energy and effective mass”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.] |
|
2018 |
7. |
S. V. Talalov, “About the non-standard viewpoint on the dynamics of closed vortex filament”, Modern Physics Letters B, 32:33 (2018), 1850410 , 7 pp.
|
3
[x]
|
|
2016 |
8. |
S. V. Talalov, “A short study of a string on a plane: The energy and the effective mass”, Modern Physics Letters A, 31:17 (2016), 1650103 , 8 pp., arXiv: math-ph//1604.04503 |
9. |
S. V. Talalov, “The System of Interacting Anyons: A Visual Model Inspired by String Theory”, otdelnaya glava knigi: I. V. Vancea, S. V. Talalov et all, Progress in String Theory Reseach., eds. Fred P. Davis, Nova Science Publishers, 2016, “53 – 88” |
|
2013 |
10. |
S. V. Talalov, “The effect of the mass transfer along the cosmic string”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2(31) (2013), 259–266 |
11. |
S. V. Talalov, “Solutions of string, vortex, and anyon types for the hierarchy of the nonlinear Schrödinger equation”, Theoret. and Math. Phys., 176:3 (2013), 1145–1155 |
12. |
E. A. Vedutenko, S. V. Talalov, “The model of scattering of neutral quantum particle on a non-stationary curve”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2013, no. 3(104), 85–89 |
|
2012 |
13. |
S. V. Talalov, “Planar string as an anyon model: cusps, braids and soliton exitations”, J. Phys.: Conf. Ser., 343 (2012), 012121(1–12) |
14. |
S. V. Talalov, “About the mechanism of matter transfer along cosmic string”, Mod. Phys. Let. A, 27:8 (2012), 1250048(1–5)
|
1
[x]
|
|
2011 |
15. |
S. V. Talalov, “The anyon model: an example inspired by string theory”, Int. J. Mod. Phys. A, 26:16 (2011), 2757–2772
|
6
[x]
|
|
2010 |
16. |
E. A. Vedutenko, S. V. Talalov, “About calculation of unperturbative amplitude for the scattering of the quantum particle on a complicated object”, Math. Models Comput. Simul., 2:5 (2010), 597–604 |
17. |
S. V. Talalov, “An anyon model”, Theoret. and Math. Phys., 165:2 (2010), 1517–1526 |
|
2009 |
18. |
S. V. Talalov, “Description of braids in terms of first-order spectral problems”, Theoret. and Math. Phys., 159:1 (2009), 469–473 |
|
2007 |
19. |
S. V. Talalov, “$N$-soliton strings in four-dimensional space–time”, Theoret. and Math. Phys., 152:3 (2007), 1234–1242 |
|
2003 |
20. |
S. V. Talalov, “An Extended Relativistic Particle Model with Arbitrary Spin and Isospin”, Theoret. and Math. Phys., 135:2 (2003), 693–703 |
|
2000 |
21. |
S. V. Talalov, “Nelineinye traektorii Redzhe v relyativistskikh modelyakh protyazhënnykh chastits”, Vestnik Samarskogo gosuniversiteta, 2000, no. 2(16), 126–145 |
22. |
S. V. Talalov, “Geometric description of a relativistic string”, Theoret. and Math. Phys., 123:1 (2000), 446–450 |
|
1999 |
23. |
S. V. Talalov, “The Poisson structure of a $4D$ spinning string”, J. Phys. A: Math. and Gen., 32 (1999), 845–857
|
5
[x]
|
|
1998 |
24. |
S. V. Talalov, “A string model of “exotic” particles”, Theoret. and Math. Phys., 115:2 (1998), 554–561 |
|
1996 |
25. |
S. V. Talalov, “String dynamics in $D=4$ space-time. II. Quantum theory”, Theoret. and Math. Phys., 109:1 (1996), 1309–1315 |
26. |
S. V. Talalov, “String dynamics in $D=4$ space-time I. Hamiltonian formalism”, Theoret. and Math. Phys., 106:2 (1996), 182–194 |
|
1994 |
27. |
S. V. Talalov, “String model in $D=1+3$ dimensions: non-standard approach to the hamiltonian dynamics and quantization”, J. Phys. A: Math. and Gen., 27 (1994), 2443–2455
|
5
[x]
|
|
1992 |
28. |
S. V. Talalov, “String quantization in four dimensions by the “bosonization” method”, Theoret. and Math. Phys., 93:3 (1992), 1433–1437 |
|
1990 |
29. |
S. V. Talalov, “Spinning string in four-dimensional spacetime as a model of $SL(2,\mathbb C)$ chiral field with anomaly. II”, Theoret. and Math. Phys., 83:1 (1990), 377–382 |
30. |
S. V. Talalov, “Spinning string in four-dimensional spacetime as a model of $SL(2,\mathbb C)$ chiral field with anomaly. I”, Theoret. and Math. Phys., 82:2 (1990), 139–145 |
|
1989 |
31. |
S. V. Talalov, “Classical $D=2+1$ spinning string: geometrical description and current algebras”, J. Phys. A: Math. and Gen., 22 (1989), 2275–2284
|
9
[x]
|
32. |
S. V. Talalov, “Current algebras in the theory of the classical $\mathcal D=2+1$ string with internal degrees of freedom”, Theoret. and Math. Phys., 79:1 (1989), 369–374 |
|
1987 |
33. |
S. V. Talalov, “Hamiltonian structure of "thirring$\times$liouville" model. Singular solutions”, Theoret. and Math. Phys., 71:3 (1987), 588–597 |
34. |
A. K. Pogrebkov, S. V. Talalov, “"Thirring $\times$ Liouville" model”, Theoret. and Math. Phys., 70:3 (1987), 241–247 |
|
1986 |
35. |
G. P. Jorjadze, A. K. Pogrebkov, M. C. Polivanov, S. V. Talalov, “Liouville field theory: IST and Poisson bracket structure”, J. Phys. A: Math. and Gen., 19:1 (1986), 121–139
|
19
[x]
|
36. |
S. V. Talalov, “Singular solutions of the Liouville equation on an interval”, Theoret. and Math. Phys., 67:3 (1986), 537–545 |
|
1981 |
37. |
S. V. Talalov, Yu. M. Shirokov, “Interaction of a charged particle with an external electromagnetic field in the presence of a strongly singular potential”, Theoret. and Math. Phys., 46:3 (1981), 207–210 |
|