Spectral resonances of OD operators in frameworks of Lax–Phillips theory, trace formulas and expansion theorems in terms of resonances, gravity surface waves in frameworks of general spectral theory, spectral theory of Schroedinger operator with accelerating potential, connections with the scattering theory.
Biography
Student of Physics Dept. of Leningrad University (1962–1967), graduate student of the same dept (1967–1970), Ph.D. — 1971, assistant professor — 1975, Leningrad State Institute of Avia-Instrument Industry (1970–1994), St. Petersburg State University of Electro-Technics (after 1994).
V. S. Buslaev, M. V. Buslaeva, A. Grigis, “Adiabatic asymptotics of the reflection coefficient”, Algebra i Analiz, 16:3 (2004), 1–23; St. Petersburg Math. J., 16:3 (2005), 437–452
M. V. Buslaeva, V. S. Buslaev, “Singularities of the Green Function of the Nonstationary Schrödinger Equation”, Funktsional. Anal. i Prilozhen., 32:2 (1998), 80–83; Funct. Anal. Appl., 32:2 (1998), 132–134
M. V. Buslaeva, “Asymptotic dynamics and spectral analysis for the Schrödinger operator with weakly accelerating potential”, Zap. Nauchn. Sem. LOMI, 164 (1987), 10–19
1985
4.
M. V. Buslaeva, “Schroedinger operator with weakly accelerating potential”, Zap. Nauchn. Sem. LOMI, 147 (1985), 10–12
1984
5.
M. V. Buslaeva, “One-dimensional Schrödinger operator with accelerating potential”, Funktsional. Anal. i Prilozhen., 18:1 (1984), 65–66; Funct. Anal. Appl., 18:1 (1984), 53–55
M. V. Buslaeva, “Asymptotic behavior of sums of the type $\sum_{k=m}^{n-1}\exp(i\omega\sqrt{nk})$ as $n,m\to\infty$”, Zap. Nauchn. Sem. LOMI, 78 (1978), 54–59; J. Soviet Math., 22:1 (1983), 1032–1035
7.
M. V. Buslaeva, “An application of scattering theory to one hydrodynamics problem”, Zap. Nauchn. Sem. LOMI, 77 (1978), 57–75; J. Soviet Math., 22:5 (1983), 1573–1585
M. V. Buslaeva, “Trace formulae for nonspectral singularities”, Izv. Vyssh. Uchebn. Zaved. Mat., 1970, no. 9, 14–20
10.
M. V. Buslaeva, “An expansion theorem for the translation invariant subspace of the canonical differential operator”, Zap. Nauchn. Sem. LOMI, 19 (1970), 209–214