|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
A. I. Nizhnikov, O. E. Yaremko, N. N. Yaremko, “Generalized Laplace Transform Based on the Differentiation Operator With Piecewise Constant Coefficients”, Chebyshevskii Sb., 24:4 (2023), 239–251 |
|
2022 |
2. |
F. S. Avdeev, O. E. Yaremko, N. N. Yaremko, “Generalization of the Laplace transform for solving differential equations with piecewise constant coefficients”, Chebyshevskii Sb., 23:2 (2022), 5–20 |
|
2021 |
3. |
A. I. Nizhnikov, O. E. Yaremko, N. N. Yaremko, “Generalized Laplace transform based on the differentiation operator with piecewise constant coefficients”, Chebyshevskii Sb., 22:5 (2021), 172–184 |
4. |
O. E. Yaremko, N. N. Yaremko, “Solving initial-boundary mathematical physics' problems based on Kotelnikov formula (the Nyquist-Shannon formula)”, University proceedings. Volga region. Physical and mathematical sciences, 2021, no. 3, 71–81 |
5. |
O. E. Yaremko, N. N. Yaremko, “Integrals and derivatives of fractional order based on Laplace type integral transformations with applications”, Applied Mathematics & Physics, 53:2 (2021), 114–124 |
|
2020 |
6. |
O. E. Yaremko, N. N. Yaremko, E. S. Mogileva, “Multiple Fourier series and Fourier integrals with non-separable variables”, University proceedings. Volga region. Physical and mathematical sciences, 2020, no. 2, 24–37 |
7. |
O. E. Yaremko, N. N. Yaremko, E. S. Mogileva, “Logarithmic image's convexity in the integral transforms theory”, University proceedings. Volga region. Physical and mathematical sciences, 2020, no. 2, 13–23 |
|
2017 |
8. |
I. I. Bavrin, O. E. Yaremko, “A reconstruction of analytic functions on the unit disk of $\mathbb{C}$”, Vladikavkaz. Mat. Zh., 19:1 (2017), 3–10 |
1
|
|
2016 |
9. |
I. I. Bavrin, O. E. Iaremko, “Inverting of generalized Riemann–Liouville operator by means of integral Laplace transform”, Ufimsk. Mat. Zh., 8:3 (2016), 41–48 ; Ufa Math. J., 8:3 (2016), 41–48 |
|
2015 |
10. |
I. I. Bavrin, V. I. Panzhensky, O. E. Iaremko, “Statistic structure generated by randomize density”, Chebyshevskii Sb., 16:4 (2015), 28–40 |
1
|
|
2013 |
11. |
O. E. Yaremko, E. S. Mogileva, “Modeling of potential fields in media with a thin inclusion by the method of deforming operators”, University proceedings. Volga region. Physical and mathematical sciences, 2013, no. 4, 49–60 |
12. |
O. E. Yaremko, “Integral Transforms with Non-separated Variables and Discontinuous Coefficients”, Zh. Mat. Fiz. Anal. Geom., 9:4 (2013), 594–603 |
13. |
O. E. Yaremko, “A generalization of the Poisson integral formula for the functions harmonic and biharmonic in a ball”, Mat. Tr., 16:1 (2013), 189–197 ; Siberian Adv. Math., 24:3 (2014), 222–227 |
1
|
|
2011 |
14. |
A. A. Malyshev, O. E. Yaremko, “Fourier vector transformation with discontinuous coefficients in the theory of elasticity”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2011, no. 8(89), 50–58 |
|
2004 |
15. |
I. I. Bavrin, O. E. Yaremko, “Transformation Operators and Boundary Value Problems”, Differ. Uravn., 40:8 (2004), 1085–1095 ; Differ. Equ., 40:8 (2004), 1149–1160 |
3
|
|
1986 |
16. |
I. I. Bavrin, O. E. Yaremko, “Integral representations in Temlyakov–Weil domains”, Dokl. Akad. Nauk SSSR, 289:6 (1986), 1293–1297 |
|
Organisations |
|
|
|
|