01.01.06 (Mathematical logic, algebra, and number theory)
Keywords:
group theory; computations in groups; discrete mathematics; symbolic computation; computer algebra; mathematics of computation; operating systems.
Main publications:
Mysovskikh V. I. Investigation of subgroup embeddings by the computer algebra package GAP // Proc. 2–nd Intern. Workshop CASC'99 (eds. V. G. Ganzha, E. V. Mayr, E. V. Vorozhtsov), Springer, 1999, p. 309–315.
Vsemirnov M. A., Mysovskikh V. I., Tamburini M. C. Triangle groups as subgroups of unitary groups // J. Algebra, 2001, v. 45, no. 2, 562–583.
V. I. Mysovskikh, A. I. Skopin, “Embeddings of nonprimary subgroups in the symmetic group $S_9$”, Zap. Nauchn. Sem. POMI, 281 (2001), 237–252; J. Math. Sci. (N. Y.), 120:4 (2004), 1618–1629
2.
V. I. Mysovskikh, “Computer algebra packages and symbolic computation”, Zap. Nauchn. Sem. POMI, 281 (2001), 227–236; J. Math. Sci. (N. Y.), 120:4 (2004), 1613–1617
V. I. Mysovskikh, A. I. Skopin, “Subgroup embeddings in the symmetric group of degree nine”, Zap. Nauchn. Sem. POMI, 265 (1999), 281–284; J. Math. Sci. (New York), 112:4 (2002), 4398–4399
4.
V. I. Mysovskikh, “Subnormalizers and embedding properties of subgroups of finite groups”, Zap. Nauchn. Sem. POMI, 265 (1999), 258–280; J. Math. Sci. (New York), 112:4 (2002), 4386–4397
V. I. Mysovskikh, A. I. Skopin, “Embedding properties of non-primary subgroups of the symmetric group of degree eight”, Zap. Nauchn. Sem. POMI, 236 (1997), 124–128; J. Math. Sci. (New York), 95:2 (1999), 2119–2122
6.
V. I. Mysovskikh, “Testing subgroups of a finite group on some embedding properties like pronormality”, Zap. Nauchn. Sem. POMI, 236 (1997), 119–123; J. Math. Sci. (New York), 95:2 (1999), 2116–2118
V. I. Mysovskikh, “On the lattice of subgroups normalized by a symmetric one in the complete monomial group”, Zap. Nauchn. Sem. POMI, 236 (1997), 111–118; J. Math. Sci. (New York), 95:2 (1999), 2111–2115
8.
N. A. Vavilov, V. I. Mysovskikh, Yu. G. Teterin, “Computational Group Theory in St. Petersburg”, Zap. Nauchn. Sem. POMI, 236 (1997), 42–49; J. Math. Sci. (New York), 95:2 (1999), 2070–2073
1991
9.
Z. I. Borevich, V. I. Mysovskikh, “Infinite chains of succesive normalizers in the general linear group over a field”, Zap. Nauchn. Sem. LOMI, 191 (1991), 44–48; J. Soviet Math., 63:6 (1993), 634–637