The conception of extended operator derivative is proved. The exemples of non-differentiable operators with extended derivative are bringing. The theorem of extended differentiability of inverse function is proved. It is indicate, that differential dependence of the resolution of the boundary problem for a nonlinear partial equation to avaible component is progressively degraded with the augmentation of nonlinearity coefficient and set dimension; it is depend also to point of differentiation. The necessary conditions of optimality fot the nonlinear infinite dimensional systems without differentiability of system state to the control are accepted. The conception of the sequential model and sequential state for the mathematical physic problems are proposed. It is indicate, that the creation of mathematical model, quality analysis of the system and basing of numerical method of resolution are realized together with use of sequential method. It is exhibited the binding of sequential state and rhe generalized resolution of the mathematicsl physics problem. The sequential extention of optimal control problem is proposed.
Biography
Graduated from Faculty of Mechaniks and Applead Mathematics of Kazakh National University in 1976 (department of applead mathematics). Ph.D. thesis was defended in 1983. D.Sci. thesis was defended in 1994. A list of my works contains more than 150 totles, including 5 monographs.
Main publications:
Serovajsky S. Arithmetical Distributions and the Sequential Extension of Binary Relations // Mathematical notes, v. 65, no. 6, 1999, 705–717.
S. Ya. Serovaĭskiĭ, “Optimal Control of Singular Stationary Systems with Phase Constraints and State Variation”, Mat. Zametki, 97:5 (2015), 761–766; Math. Notes, 97:5 (2015), 774–778
2013
2.
S. Ya. Serovaiskii, “An optimal control problem for a nonlinear elliptic equation with a phase constraint and state variation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 9, 81–86; Russian Math. (Iz. VUZ), 57:9 (2013), 67–70
S. Ya. Serovaĭskiĭ, “Approximation Methods in Optimal Control Problems for Nonlinear Infinite-Dimensional Systems”, Mat. Zametki, 94:4 (2013), 600–619; Math. Notes, 94:4 (2013), 567–582
S. Ya. Serovaĭskiĭ, “Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control”, Mat. Zametki, 93:4 (2013), 586–603; Math. Notes, 93:4 (2013), 593–606
2012
5.
A. A. Ashimov, As. A. Ashimov, Yu. V. Borovskii, D. A. Novikov, S. Ya. Serovaiskii, B. T. Sultanov, “Elements of the theory and methods of parametric regulation of national economy's evolution using discrete dynamic stochastic models”, Avtomat. i Telemekh., 2012, no. 7, 55–66; Autom. Remote Control, 73:7 (2012), 1156–1164
2010
6.
S. Ya. Serovaiskii, “The necessary optimality conditions for a nonlinear stationary system whose state functional is not differentiable with respect to the control”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 6, 32–46; Russian Math. (Iz. VUZ), 54:6 (2010), 26–38
7.
S. Ya. Serovaiskii, “Differentiation of operators and optimality conditions in category interpretation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 2, 66–76; Russian Math. (Iz. VUZ), 54:2 (2010), 57–65
2009
8.
S. Ya. Serovaĭskiĭ, “Optimization for nonlinear hyperbolic equations without the uniqueness theorem for a solution of the boundary-value problem”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 1, 76–83; Russian Math. (Iz. VUZ), 53:1 (2009), 64–70
2008
9.
S. Ya. Serovaĭskiĭ, “Sequential differentiation and its applications in optimal control problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 7, 45–56; Russian Math. (Iz. VUZ), 52:7 (2008), 38–47
10.
S. Ya. Serovaĭskiĭ, “Sequential differentiation in nonsmooth infinite-dimensional extremal problems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 1, 48–62; Russian Math. (Iz. VUZ), 52:1 (2008), 45–58
2006
11.
S. Ya. Serovaĭskiĭ, “Sequential derivatives of operators and their applications in nonsmooth problems of optimal control”, Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 12, 75–87; Russian Math. (Iz. VUZ), 50:12 (2006), 73–84
S. Ya. Serovaĭskiĭ, “Optimal control in nonlinear infinite-dimensional systems with nondifferentiability of two types”, Mat. Zametki, 80:6 (2006), 885–901; Math. Notes, 80:6 (2006), 833–847
2005
13.
S. Ya. Serovaĭskiĭ, “A control problem in coefficients and an extended derivative with respect to a convex set”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 12, 46–55; Russian Math. (Iz. VUZ), 49:12 (2005), 43–51
2004
14.
S. Ya. Serovaĭskiĭ, “Optimal control for a singular equation with a nonsmooth operator and an isoperimetric condition”, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 12, 58–65; Russian Math. (Iz. VUZ), 48:12 (2004), 55–62
15.
S. Ya. Serovaĭskiĭ, “An approximate solution of an optimal control problem for a singular equation of elliptic type with a nonsmooth nonlinearity”, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 1, 80–86; Russian Math. (Iz. VUZ), 48:1 (2004), 77–83
S. Ya. Serovaĭskiĭ, “Approximate Penalty Method in Optimal Control Problems for Nonsmooth Singular Systems”, Mat. Zametki, 76:6 (2004), 893–904; Math. Notes, 76:6 (2004), 834–843
S. Ya. Serovaĭskiĭ, “Optimal Control of an Elliptic Equation with a Nonsmooth Nonlinearity”, Differ. Uravn., 39:10 (2003), 1420–1424; Differ. Equ., 39:10 (2003), 1497–1502
S. Ya. Serovaĭskiĭ, “Arithmetic distributions and sequential extension of binary relations”, Mat. Zametki, 65:6 (1999), 836–853; Math. Notes, 65:6 (1999), 705–717
1997
22.
S. Ya. Serovaĭskiĭ, “Optimal control of a nonlinear singular system with a fixed terminal state”, Differ. Uravn., 33:8 (1997), 1114–1117; Differ. Equ., 33:8 (1997), 1121–1124
S. Ya. Serovaĭskiĭ, “Extremal problems on differentiable submanifolds of a Banach space”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 5, 83–86; Russian Math. (Iz. VUZ), 40:5 (1996), 81–84
25.
S. Ya. Serovaĭskiĭ, “On a minimax problem for nonlinear elliptic equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 4, 66–74; Russian Math. (Iz. VUZ), 40:4 (1996), 64–72
26.
S. Ya. Serovaĭskiĭ, “Optimal control of a nonlinear singular system with state constraints”, Mat. Zametki, 60:4 (1996), 511–518; Math. Notes, 60:4 (1996), 383–388
S. Ya. Serovaĭskiĭ, “Gradient methods in an optimal control problem for a nonlinear elliptic system”, Sibirsk. Mat. Zh., 37:5 (1996), 1154–1166; Siberian Math. J., 37:5 (1996), 1016–1027
S. Ya. Serovaĭskiĭ, “Necessary conditions for an extremum in the case of the nondifferentiability of the state function with respect to the control”, Differ. Uravn., 31:6 (1995), 1055–1059; Differ. Equ., 31:6 (1995), 987–991
S. Ya. Serovaĭskiĭ, “Optimization in a nonlinear parabolic system with a control in the coefficients”, Mat. Sb., 185:4 (1994), 151–160; Russian Acad. Sci. Sb. Math., 81:2 (1995), 533–543
S. Ya. Serovaĭskiĭ, “Differentiation of Inverse Functions in Spaces without Norm”, Funktsional. Anal. i Prilozhen., 27:4 (1993), 84–87; Funct. Anal. Appl., 27:4 (1993), 290–292
S. Ya. Serovaĭskiĭ, “Optimization in a nonlinear elliptic system with control in the coefficients”, Mat. Zametki, 54:2 (1993), 85–95; Math. Notes, 54:2 (1993), 825–832
S. Ya. Serovaĭskiĭ, “The regularization method in a problem of the optimal control of a nonlinear hyperbolic system”, Differ. Uravn., 28:12 (1992), 2188–2190; Differ. Equ., 28:12 (1992), 1834–1836
S. Ya. Serovaĭskiĭ, “Optimal control in a nonlinear stationary system with a nonmonotone operator”, Differ. Uravn., 28:9 (1992), 1579–1587; Differ. Equ., 28:9 (1992), 1300–1307
35.
S. Ya. Serovaĭskiĭ, “Pareto optimality for a system described by a nonlinear equation of parabolic type”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 11, 55–64; Russian Math. (Iz. VUZ), 36:11 (1992), 53–62
36.
S. Ya. Serovaĭskiĭ, “Stability with respect to linear approximation in infinite-dimensional systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 8, 57–64; Russian Math. (Iz. VUZ), 36:8 (1992), 53–59
37.
S. Ya. Serovaĭskiĭ, “Necessary conditions for optimality for a class of nonlinear singular elliptic systems”, Sibirsk. Mat. Zh., 33:2 (1992), 206–210; Siberian Math. J., 33:2 (1992), 359–363
1991
38.
S. Ya. Serovaĭskiĭ, “Extended differentiability of an implicit function in spaces without a norm”, Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 12, 55–63; Soviet Math. (Iz. VUZ), 35:12 (1991), 56–63
S. Ya. Serovaĭskiĭ, “Approximate conditions for optimality for a system described by a nonlinear parabolic equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 11, 52–60; Soviet Math. (Iz. VUZ), 35:11 (1991), 52–60
40.
S. Ya. Serovaĭskiĭ, “Necessary and sufficient conditions for optimality for a system described by a nonlinear elliptic equation”, Sibirsk. Mat. Zh., 32:3 (1991), 141–150; Siberian Math. J., 32:3 (1991), 468–476
S. Ya. Serovaĭskiĭ, “Quasiconjugate systems and necessary conditions for optimality in nonlinear infinite-dimensional systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 4, 61–69; Soviet Math. (Iz. VUZ), 33:4 (1989), 75–84
S. Ya. Serovaĭskiĭ, “Method of Tikhonov regularization in a problem of optimal control of a nonlinear parabolic system”, Sibirsk. Mat. Zh., 30:1 (1989), 212–215; Siberian Math. J., 30:1 (1989), 163–165
1984
44.
S. Ya. Serovaĭskiĭ, “An optimal control problem for an elliptic system with a power singularity”, Sibirsk. Mat. Zh., 25:1 (1984), 120–125; Siberian Math. J., 25:1 (1984), 100–105
45.
A. T. Lukyanov, S. Ya. Serovaĭskiĭ, “The method of successive approximations in the problem of optimal control of a nonlinear parabolic system”, Zh. Vychisl. Mat. Mat. Fiz., 24:11 (1984), 1638–1648; U.S.S.R. Comput. Math. Math. Phys., 24:6 (1984), 23–30
A. T. Lukyanov, S. Ya. Serovaĭskiĭ, “Optimal control for a bilinear hyperbolic system”, Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 10, 46–48
1982
47.
S. Ya. Serovaĭskiĭ, “A control problem in coefficients for equations of parabolic type”, Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 12, 44–50; Soviet Math. (Iz. VUZ), 26:12 (1982), 45–52