01.01.05 (Probability theory and mathematical statistics)
Birth date:
5.05.1975
E-mail:
Subject:
nonlinear and nonparametric regression, kernel estimators, one-step estimators, change-point problem
Main publications:
Yu.Yu. Linke, Asymptotic properties of one-step M-estimators., Communications in Statistics - Theory and Methods., 48, (2019), 4096-4118
Linke Y., Borisov I., Ruzankin P., Kutsenko V., Yarovaya E., Shalnova S., “Universal local linear kernel estimators in nonparametric regression”, Mathematics, 10:15 (2022), 2693.
Yu.Yu. Linke, I.S. Borisov, Constructing initial estimators in one-step estimation procedures of nonlinear regression, Stat. Probab. Lett., 120, (2017), 87-94
Yu.Yu. Linke, Asymptotic normality of one-step M-estimators based on non-identically distributed observations., Stat. Probab. Lett., 129, (2017), 216-221
Yu.Yu. Linke, I.S,Borisov, “Insensitivity of Nadaraya–Watson estimators to design correlation”, Communications in Statistics - Theory and Methods, 51:19 (2022), 6909-6918
Yu. Yu. Linke, I. S. Borisov, “Constructing explicit estimators in nonlinear regression problems”, Theory Probab. Appl., 63:1 (2018), 22–44
3.
Yu. Yu. Linke, A. I. Sakhanenko, “Asymptotically normal estimation of a parameter in a linear-fractional regression problem”, Siberian Math. J., 41:1 (2000), 125–137
4.
Y. Linke, I. Borisov, P. Ruzankin, V. Kutsenko, E. Yarovaya, S. Shalnova., “Universal local linear kernel estimators in nonparametric regression”, Mathematics, 10:15 (2022), 2693
I. S. Borisov, Yu. Yu. Linke, P. S. Ruzankin, “Universal weighted kernel-type estimators for some class of regression models”, Metrika, 84:2 (2021), 141-166
Yu. Yu. Linke, I. S. Borisov, “Insensitivity of Nadaraya–Watson estimators to design correlation”, Communications in Statistics – Theory and Methods, 51:19 (2022), 6909–6918
Yu. Yu. Linke, “Asymptotic properties of one-step weighted $M$-estimators with application to some regression problems.”, Theory Probab. Appl., 62:3 (2018), 373–398
9.
Yu. Yu. Linke, “Asymptotic normality of one-step M-estimators based on non-identically distributed observations”, Statist. Probab. Lett., 129 (2017), 216-221
A. I. Sakhanenko, Yu. Yu. Linke, “Asymptotically optimal estimation in a linear-fractional regression problem with random errors in coefficients”, Siberian Math. J., 47:6 (2006), 1128–1153
11.
Yu. Yu. Linke, A. I. Sakhanenko, “Asymptotically optimal estimation in the linear regression problem in the case of violation of some classical assumptions”, Siberian Math. J., 50:2 (2009), 302–315
12.
Yu. Yu. Linke, A. I. Sakhanenko, “Asymptotically normal estimation of a multidimensional parameter in the linear-fractional regression problem”, Siberian Math. J., 42:2 (2001), 317–331
13.
Yu. Yu. Linke, “Towards insensitivity of Nadaraya–Watson estimators with respect to design correlation”, Theory Probab. Appl., 68:2 (2023), 198–210
14.
Yu. Yu. Linke, A. I. Sakhanenko, “Asymptotically normal explicit estimation of parameters in the Michaelis–Menten equation”, Siberian Math. J., 42:3 (2001), 517–536
15.
Yu. Yu. Linke, A. I. Sakhanenko, “Asymptotically normal estimation in the linear-fractional regression problem with random errors in coefficients”, Siberian Math. J., 49:3 (2008), 474–497
16.
Yu. Yu. Linke, A. I. Sakhanenko, “Asymptotically optimal estimation in a linear regression problem with random errors in coefficients”, Siberian Math. J., 51:1 (2010), 104–118
17.
Yu. Yu. Linke, “Refinement of Fisher’s one-step estimators in the case of slowly converging preliminary estimators”, Theory Probab. Appl., 60:1 (2016), 88–102
18.
Yu. Yu. Linke, “On the asymptotics of distributions of two-step statistical estimates”, Siberian Math. J., 52:4 (2011), 665–681
19.
A. I. Sakhanenko, Yu. Yu. Linke, “Improvement of estimators in a linear regression problem with random errors in coefficients”, Siberian Math. J., 52:1 (2011), 113–126
20.
Y.Y. Linke, I.S. Borisov, P.S. Ruzankin, “Universal kernel-type estimation of random fields”, Statistics, 57:4 (2023), 785-810
Yu. Yu. Linke, A. I. Sakhanenko, “On conditions for asymptotic normality of Fisher's one-step estimators in one-parameter families of distributions”, Sib. Èlektron. Mat. Izv., 11 (2014), 464–475
22.
A. I. Sakhanenko, Yu. Yu. Linke, “Consistent estimation in a linear regression problem with random errors in coefficients”, Siberian Math. J., 52:4 (2011), 711–726
23.
Yu. Yu. Linke, I. S. Borisov, “Universal nonparametric kernel-type estimators for the mean and covariance functions of a stochastic process”, Theory Probab. Appl., 69:1 (2024), 35–58
24.
Yu. Yu. Linke, I. S. Borisov, “An approach to constructing explicit estimators in nonlinear regression”, Siberian Adv. Math., 33:4 (2023), 338–346
25.
Yu. Yu. Linke, A. I. Sakhanenko, “Conditions of asymptotic normality of one-step $M$-estimators”, J. Math. Sci., 230:1 (2018), 95–111
26.
Yu. Yu. Linke, A. I. Sakhanenko, “On asymptotics of the distributions of some two-step statistical estimators of a mutlidimensional parameter”, Siberian Adv. Math., 24:2 (2014), 119–139
27.
Yu. Yu. Linke, “On Sufficient Conditions for the Consistency of Local Linear Kernel Estimators”, Math. Notes, 114:3 (2023), 308–321
28.
Yu. Yu. Linke, I. S. Borisov, “Toward the notion of intrinsically linear models in nonlinear regression”, Siberian Adv. Math., 29:3 (2019), 210-216
Yu.Yu. Linke, “Kernel estimators for the mean function of a stochastic process under sparse design conditions”, Siberian Advances in Mathematics, 32:4 (2019), 269–276
Yu. Yu. Linke, A. I. Sakhanenko, “On asymptotics of the distribution of a two-step statistical estimator of a one-dimensional parameter”, Sib. Èlektron. Mat. Izv., 10 (2013), 627–640
31.
Yu. Yu. Linke, A. I. Sakhanenko, “On solutions to the equation for improving additives in regression problems”, Siberian Adv. Math., 22:4 (2012), 261–274
32.
Linke Y. , Borisov I. , Ruzankin P. , Kutsenko V., Yarovaya E., Shalnova S., “Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency”, Mathematics, 12:12 (2024), 1890 , 23 pp.
33.
Yu. Yu. Linke, “Mean function estimation for a noisy random process under a sparse data condition”, Chebyshevskii Sb., 24:5 (2023), 112–125
34.
Yu. Yu. Linke, “Kernel estimators for the mean function of a stochastic process under sparse design conditions”, Mat. Tr., 25:2 (2022), 149–161
35.
Yu. Yu. Linke, “Two-step estimation in heteroscedastic linear regression model”, J. Math. Sci., 231:2 (2018), 206–217
36.
A. A. Borovkov, Yu. Yu. Linke, “Change-point problem for large samples and incomplete information on distribution”, Math. Methods of Statistics, 14:4 (2005), 404-430
37.
A. A. Borovkov, Yu. Yu. Linke, “Asymptotically optimal estimates in the smooth change-point problem”, Math. Methods of Statistics, 13:1 (2004), 1-24
38.
I. V. Askarova, Yu. Yu. Linke, “On conditions for the asymptotic normality of estimates of the second step in a linear-fractional regression problem”, Sib. Zh. Ind. Mat., 6:3 (2003), 8–17
39.
Yu. Yu. Linke, “Explicit asymptotically normal estimation of the parameter for a multidimensional nonlinear regression problem”, Sib. Zh. Ind. Mat., 3:1 (2000), 157–164