Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kamenev, Georgij Kirillovich
(1960–2020)

Total publications: 33 (33)
in MathSciNet: 30 (30)
in zbMATH: 29 (29)
in Web of Science: 17 (17)
in Scopus: 17 (17)
Cited articles: 32
Citations: 307
Presentations: 1

Number of views:
This page:1359
Abstract pages:12015
Full texts:4059
References:1844
Senior Researcher
Doctor of physico-mathematical sciences (2005)
Birth date: 16.03.1960
Website: https://www.ccas.ru/kamenev
Keywords: approximation of convex sets; approximation of mappings; convex polyhedra; approximation algorithms; computational geometry; multiplecriteria decision making; decision support systems; mathematical modelling.
   
Main publications:
  • Lotov A. V., Bushenkov V. A., Kamenev G. K. Interactive decision maps. Approximation and visualization of Pareto frontier. Boston: Kluwer Acad. Publ., 2004.

https://www.mathnet.ru/eng/person17814
http://ru.wikipedia.org/wiki/Kamenev,_Georgii_Kirillovich
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/308835
https://elibrary.ru/author_items.asp?authorid=12123
https://www.researchgate.net/profile/George-Kamenev

Full list of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)
1. V. E. Berezkin, G. K. Kamenev, A. V. Lotov, “Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier”, Comput. Math. Math. Phys., 46:11 (2006), 1918–1931  mathnet  crossref  mathscinet  elib  scopus
2. G. K. Kamenev, “A class of adaptive algorithms for approximating convex bodies by polyhedra”, Comput. Math. Math. Phys., 32:1 (1992), 114–127  mathnet  mathscinet  zmath  isi
3. G. K. Kamenev, “Approximation of completely bounded sets by the deep holes method”, Comput. Math. Math. Phys., 41:11 (2001), 1667–1675  mathnet  mathscinet  zmath  elib
4. G. K. Kamenev, “Analysis of an algorithm for approximating convex bodies”, Comput. Math. Math. Phys., 34:4 (1994), 521–528  mathnet  mathscinet  zmath  isi
5. G. K. Kamenev, “Efficient algorithms for approximation of nonsmooth convex bodies”, Comput. Math. Math. Phys., 39:3 (1999), 423–427  mathnet  mathscinet  zmath
6. G. K. Kamenev, “The efficiency of Hausdorff algorithms for approximating convex bodies by polytopes”, Comput. Math. Math. Phys., 33:5 (1993), 709–716  mathnet  mathscinet  zmath  isi
7. S. M. Dzholdybaeva, G. K. Kamenev, “Numerical analysis of the efficiency of an algorithm for approximating convex bodies by polyhedra”, Comput. Math. Math. Phys., 32:6 (1992), 739–746  mathnet  mathscinet  zmath  isi
8. G. K. Kamenev, D. L. Kondratiev, “On the method of nonclosed nonlinear models analysis”, Matem. Mod., 4:3 (1992), 105–118  mathnet  mathscinet  zmath
9. R. V. Efremov, G. K. Kamenev, “A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:1 (2002), 20–29  mathnet  mathscinet  zmath
10. G. K. Kamenev, “Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality”, Comput. Math. Math. Phys., 54:8 (2014), 1201–1213  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
11. G. K. Kamenev, A. V. Lotov, T. S. Mayskaya, “Iterative method for constructing coverings of the multidimensional unit sphere”, Comput. Math. Math. Phys., 53:2 (2013), 131–143  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
12. G. K. Kamenev, “Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull”, Comput. Math. Math. Phys., 53:4 (2013), 375–385  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
13. G. K. Kamenev, “The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:5 (2008), 724–738  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
14. G. K. Kamenev, “An algorithm for approximating polyhedra”, Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996), 134–147  mathnet  mathscinet  zmath
15. V. E. Berezkin, G. K. Kamenev, “Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems”, Comput. Math. Math. Phys., 52:6 (2012), 846–854  mathnet  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus
16. R. V. Efremov, G. K. Kamenev, “Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 51:6 (2011), 952–964  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
17. G. K. Kamenev, “Conjugate adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:9 (2002), 1301–1316  mathnet  mathscinet  zmath
18. G. K. Kamenev, “Multicriteria identification sets method”, Comput. Math. Math. Phys., 56:11 (2016), 1843–1858  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
19. G. K. Kamenev, “Self-dual adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 43:8 (2003), 1073–1086  mathnet  mathscinet  zmath
20. G. K. Kamenev, “On the approximation properties of nonsmooth convex disks”, Comput. Math. Math. Phys., 40:10 (2000), 1404–1414  mathnet  mathscinet  zmath  elib
21. G. K. Kamenev, “Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls”, Comput. Math. Math. Phys., 56:5 (2016), 744–755  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
22. G. K. Kamenev, “Study of an adaptive single-phase method for approximating the multidimensional Pareto frontier in nonlinear systems”, Comput. Math. Math. Phys., 49:12 (2009), 2006–2016  mathnet  crossref  mathscinet  isi  elib  elib  scopus
23. V. A. Bushenkov, D. V. Gusev, G. K. Kamenev, A. V. Lotov, O. L. Chernykh, “Visualization of the Pareto set in the choice multidimensional problem”, Dokl. Akad. Nauk, 335:5 (1994), 567–569  mathnet  zmath
24. G. K. Kamenev, I. G. Kamenev, “Discrete-dynamic modeling of governance for human capital”, Math. Models Comput. Simul., 13:1 (2021), 144–153  mathnet  crossref  crossref  mathscinet
25. G. K. Kamenev, N. N. Olenev, “Study of identification and forecast stability for Russian economic”, Math. Models Comput. Simul., 7:2 (2015), 179–189  mathnet  crossref  mathscinet  zmath  elib  elib  scopus
26. G. K. Kamenev, A. I. Pospelov, “Polyhedral approximation of convex compact bodies by filling methods”, Comput. Math. Math. Phys., 52:5 (2012), 680–690  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
27. G. K. Kamenev, “Multicriteria method for identification and forecasting”, Math. Models Comput. Simul., 10:2 (2018), 154–163  mathnet  crossref  mathscinet  zmath  elib  scopus
28. G. K. Kamenev, “On one approach to the uncertainty investigation arising in model identification”, Matem. Mod., 22:9 (2010), 116–128  mathnet  zmath  elib
29. G. K. Kamenev, “Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls”, Comput. Math. Math. Phys., 55:10 (2015), 1619–1632  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
30. N. B. Brusnikina, G. K. Kamenev, “On the complexity and methods of polyhedral approximations of convex bodies with a partially smooth boundary”, Comput. Math. Math. Phys., 45:9 (2005), 1500–1510  mathnet  mathscinet  zmath  elib  elib
31. G. K. Kamenev, I. G. Kamenev, “Multicriterial metric data analysis in human capital modelling”, Kompyuternye issledovaniya i modelirovanie, 12:5 (2020), 1223–1245  mathnet  crossref  scopus; 1
32. G. K. Kamenev, “Duality theory of optimal adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:3 (2008), 376–394  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
33. G. K. Kamenev, “Method for constructing optimal dark coverings”, Comput. Math. Math. Phys., 58:7 (2018), 1040–1048  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus

Presentations in Math-Net.Ru
1. Оптимальные методы полиэдральной аппроксимации выпуклых тел
G. K. Kamenev
Mathematical Seminar
November 30, 2013

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024