Full list of scientific publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
1. |
Merzlyakov, S.G., Popenov, S.V., “Interpolation by Series of Exponential Functions Whose Exponents Are Condensed in a Certain Direction”, Journal of Mathematical Sciences (United States),, 257:3 (2021), 334–352 |
2. |
S. G. Merzlyakov, S. V. Popenov, “Set of Exponents for Interpolation by Sums of Exponential Series in All Convex Domains”, Journal of Mathematical Sciences, 245 (2020), 48-63 |
3. |
S. G. Merzlyakov, S. V. Popenov, “Interpolyatsiya summami ryadov eksponent i globalnaya zadacha Koshi dlya operatorov svertki”, Doklady RAN. Matematika, 485:2 (2019), 149-152 |
4. |
S. G. Merzlyakov, S. V. Popenov, “Interpolation by series of exponential functions whose exponents are condensed in a certain direction”, Complex Analysis. Mathematical Physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 162, VINITI, Moscow, 2019, 62–79 |
5. |
S. G. Merzlyakov, S. V. Popenov, “Interpolyatsiya s pomoschyu ryadov eksponent s beskonechnym chislom uzlov i blizkie zadachi”, «Kompleksnyi analiz i teoriya approksimatsii» (Ufa, 29 – 31 maya 2019 g.), eds. Z. Yu. Fazullin, BashGU, Ufa, 2019, 34 http://matem.anrb.ru/conf/sbornik_ufa19.pdf |
6. |
S. G. Merzlyakov, S. V. Popenov, ““Interpolation in convex domains by sums of series of exponentials”,”, XXVII St. Petersburg Summer Meeting in Complex analysis (St. Petersburg, August 6-11, 2018), Euler International Mathematical Institute, St. Petersburg, 2018, 24 |
7. |
Merzlyakov S. G. , Popenov S. V., “Reshenie zadachi Koshi s beskonechnym chislom uzlov dlya operatorov svertki s pomoschyu ryadov eksponent”, Mezhdunarodnaya nauchnaya konferentsiya “Spektralnaya teoriya i smezhnye voprosy” (g.Ufa s 1 po 4 oktyabrya 2018 goda.), eds. R. N. Garifullin, BGPU im. M. Akmully, Ufa, 2018, 117 |
8. |
S. G. Merzlyakov, S. V. Popenov, “Interpolyatsiya v oblasti summami ryadov eksponent, pokazateli kotorykh imeyut odno napravlenie sguscheniya”, Kompleksnyi analiz i geometriya (Ufa, 23 – 26 maya 2018 g.), eds. Z.Yu. Fazullin, BashGU, Ufa, 2018, 28 http://matem.anrb.ru/conf/abst_cageom.pdf |
9. |
S. G. Merzlyakov, S. V. Popenov, “Set of exponents for interpolation of exponential series by sums in all convex domains”, Journal of Mathematical Sciences, 245:1 (2020), 48–63 |
10. |
S. G. Merzlyakov, S. V. Popenov, “Interpolyatsiya ryadami ekspoennt i operatory sverki”, Mezhdunarodnaya matematicheskaya konferentsiya po teorii funktsii, posvyaschennaya 100-letiyu chl.korr. AN SSSR A.F. Leonteva (Ufa, 24–27 maya 2017 g.), eds. R.N. Garifullin, RITs BashGU, Ufa, 2017, 129 |
11. |
S. G. Merzlyakov, S. V. Popenov, “Interpolation in convex domains by sums of series of exponentials”, Euler International Mathematical Institute, XXVI St. Petersburg Summer Meeting in Complex analysis (St. Petersburg, June 25-30, 2017), Euler International Mathematical Institute, St. Petersburg, 2017, 22 |
12. |
S. G. Merzlyakov, S. V. Popenov, “Mnozhestvo pokazatelei dlya interpolyatsii summami ryadov eksponent vo vsekh vypuklykh oblastyakh”, Ufimskaya mezhdunarodnaya konferentsiya s mezhdunarodnym uchastiem, IMVTs UNTs RAN, BGU, BGPU im. M. Akmully (23-30 sentyabrya 2016 g.), RITs BashGU, Ufa, 2016, 109-110 |
13. |
S. G. Merzlyakov, S. V. Popenov, Interpolation by sums of the series of exponentials in H(C) with interpolation nodes on the rays, 2016 (Published online) , 14 pp., arXiv: arXiv:1612.05972 [math.CV] |
14. |
Merzlyakov, S. G.; Popenov, S. V., “Interpolation by series of exponentials in H(D) with real nodes. Ufa Math. J. 7”, Ufa Math. J., 2015, no. no. 1, 46–57 |
15. |
S. G. Merzlyakov, S. V. Popenov, “Interpolation by the series of exponentials in H(D) from the real interpolation nodes”, 42th St. Petersburg Summer Meeting in Mathematical analysis anda Summer School for Young Scientists, Euler international mathematical institute (June 25-30, 2015), Book of abstracts, Sankt-Peterburg, 2015, p. 34 |
16. |
S. G. Merzlyakov, S. V. Popenov, “Interpolyatsiya funktsiyami iz invariantnykh podprostranstv v prostranstvakh analiticheskikh funktsii”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy Odinnadtsatoi Mezhdunarodnoi Kazanskoi letnei nauchnoi shkoly-konferentsii (Kazan, 22-28 avgusta 2013 g), Trudy Matematicheskogo tsentra imeni N.I. Lobachevskogo, T.10, Kazanskii universitet, Kazan, 2014, 303-305 |
17. |
S. G. Merzlyakov, S. V. Popenov, Interpolyatsiya ryadami eksponent v H(D), s veschestvennymi uzlami, 2014 , 14 pp., arXiv: arXiv:1411.3147 |
18. |
S. G. Merzlyakov, S. V. Popenov, “Interpolation with real nodes by series of exponentials in the spaces of analytic functions”, Intern. conference “Complex analysis and related topics”, S. Petersburg State University, S. Petersburg Dept. of Steklov Math. Inst., April 14-18 (S. Petersburg, April 14-18), Book of abstracts, Sankt-Peterburg, 2014, p.22 |
19. |
S. G. Merzlyakov, S. V. Popenov, “Criteria for interpolation with real nodes by the elements of invariant subspaces in the space of analytic functions in unbounded convex domain”, “Spectral theory and differential equations”, Intern. conference dedicated to the centenary of B.M. Levitan, Lomonosov Moscow State University (June 23-27, 2014), Book of abstracts, MGU, Moskva, 2014, p.26 |
20. |
S. G. Merzlyakov, S. V. Popenov, “Interpolation with multiplicity by series of exponentials in H(C) with nodes on the real axis”, Ufa Math. Journal, 5:3 (2013), 127–140 |
21. |
S. G. Merzlyakov, S. V. Popenov, “Interpolation with multiplicities from the points on the real axes by series of exponentials converging in the space of entire functions”, Mezhdunarodnaya konferentsiya “Nelineinye uravneniya i kompleksnyi analiz”, Institute of Mathematics with Computer Center, Ufa, Russia, Rossiiskaya akademiya nauk, Institut matematiki s vychislitelnym tsentrom UNTs RAN (ozero Bannoe,18-22 marta 2013.), Tezisy dokladov, IMVTs UNTs RAN, Ufa, 2013, 42-43 |
22. |
S. G. Merzlyakov, S. V. Popenov, “Interpolation with multiplicities with real nodes by means of series of exponentials for analytic functions”, 22nd St. Petersburg Summer Meeting in Mathematical Analysis (St. Petersburg, June 25-30, 2013), Tezisy dokladov, Euler International Mathematical Institute, Sankt-Peterburg, 2013, 28 |
23. |
S. G. Merzlyakov, S. V. Popenov, “Kriterii interpolyatsii ryadami eksponent i elementami invariantnykh podprostranstv”, Mezhdunarodnaya nauchnaya konferentsiya “Nelineinyi analiz i spektralnye zadachi” (Bashgosuniversitet, 18- 22 iyunya 2013g), Tezisy dokladov, BGU, Ufa, 2013, 22 |
24. |
I. Kh. Musin, S. V. Popënov, “O vesovom prostranstve beskonechno differentsiruemykh funktsii v $\mathbb R^n$”, Ufimsk. matem. zhurn., 2:3 (2010), 54–62
|
3
[x]
|
25. |
V. V. Napalkov, S. V. Popenov, “Golomorfnaya zadacha Koshi dlya operatorov svertki v analiticheski ravnomernykh prostranstvakh i predstavleniya Fishera”, Dokl. RAN, 381:2 (2001), 164-166
|
7
[x]
|
26. |
N. D. Bublik, S. V. Popenov, A. B. Sekerin, “Upravlenie finansovymi i bankovskimi riskami”, Ufim. fil. Vseros. zaoch. fin.-ekon. in-ta, Ufa, 1998, 254 |
27. |
V. V. Napalkov, S. V. Popenov, “O preobrazovanii Laplasa funktsionalov na vesovom prostranstve Bergmana tselykh funktsii v $C^n$”, Dokl. RAN, 352:5 (1997) |
28. |
V. V. Napalkov, S. V. Popenov, “On the Laplace transform of functionals in a weighted Bergman space of entire functions in $\mathbb{C}^n$”, Dokl. Akad. Nauk, 352:5 (1997), 595–597 |
29. |
C. V. Popenov, “O preobrazovanii Laplasa funktsionalov v nekotorykh vesovykh prostranstvakh Bergmana v C”, Kompleksnyi analiz, differentsialnye uravneniya, chislennye metody i prilozheniya. Ufa, 1996. T. 2. Kompleksnyi analiz., Ufa, 1996, S. 125–132 |
30. |
V. V. Napalkov, S. V. Popenov, “Uravnenie svertki v yadre differentsialnogo operatora v $H(C^n)$”, Dokl. RAN, 50:3 (1995) |
31. |
V. V. Napalkov, S. V. Popenov, “The convolution equation in the kernel of a differential operator in $H(\mathbb{C}^n)$”, Dokl. Math., 50:3 (1995), 458–461 |
32. |
Popënov, S. V., “On a weighted space of sequences of functions that are analytic in an unbounded convex domain. (Russian), Ufa,”, Investigations in the theory of approximations (Russian), Akad. Nauk SSSR Ural. Otdel., Bashkir. Nauchn. Tsentr, Ufa, 1989, 107–113 |
33. |
Popënov, S. V., “Weighted spaces of functions that are analytic in a bounded convex domain in Cm. (Russian)”, Current problems in function theory, Rostov. Gos. Univ., Rostov-on-Don (Teberda, 1985), Rostov. Gos. Univ., Rostov-on-Don, Rostov-on-Don, 1987, 99–101 |
34. |
S. V. Popenov, “Weighted space of functions analytic in an unbounded convex domain in $\mathbf C^m$”, Math. Notes, 40:3 (1986), 720–725 |
35. |
Popënov, S. V., “A weighted space of entire functions. (Russian) Investigations in the theory of the approximation of functions (Russian)”, Investigations in the theory of the approximation of functions (Russian) Akad. Nauk SSSR Bashkir. Filial, Otdel Fiz. Mat., Akad. Nauk SSSR Bashkir. Filial, Otdel Fiz. Mat., Ufa,, 1986, 89–96 |
36. |
Popenov, S.V., “A class of weighted spaces of entire functions. (English)”, Pinchuk, S.I. (ed.) Investigations on the theory of approximation of functions. Work collection. (Issledovaniya po teorii approksimatsii funktsij. Sbornik rabot). (Russian) (Ufa, 1984), eds. Pinchuk, S.I. (ed.), ”Investigation on the theory of approximation of functions, Work Collect., Ufa 1984”, Ufa, 1984, 105-116 https://zbmath.org/?q=an:04027874 |
37. |
Popënov, S. V., “A class of weighted spaces of entire functions.”, Studies in the theory of approximation of functions, , Akad. Nauk SSSR Bashkir. Filial, Akad. Nauk SSSR Bashkir. Filial, Ufa, Tukaeva,50, 1984, 105–116 |
|