01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date:
16.06.1974
E-mail:
Keywords:
geometrical methods in differential equations; point transformations; point-invariant classes of the differential equations; Painleve equations; equivalence problem.
V. V. Kartak, “Solution of the equivalence problem for the Painlevé IV equation”, TMF, 173:2 (2012), 245–267; Theoret. and Math. Phys., 173:2 (2012), 1541–1564
V. V. Kartak, “Extensions of point-invariant classes of third-order ordinary-differential equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 10, 29–32; Russian Math. (Iz. VUZ), 50:10 (2006), 26–28
2005
5.
V. V. Kartak, “On the Geometry of Point-Transformation Invariant Class of Third-Order Ordinary Differential Equations”, Mat. Zametki, 77:5 (2005), 719–726; Math. Notes, 77:5 (2005), 663–670
2001
6.
V. V. Dmitrieva, “Point-Invariant Classes of Third-Order Ordinary Differential Equations”, Mat. Zametki, 70:2 (2001), 195–200; Math. Notes, 70:2 (2001), 175–180
A. V. Gladkov, V. V. Dmitrieva, R. A. Sharipov, “Some nonlinear equations reducible to diffusion-type equations”, TMF, 123:1 (2000), 26–37; Theoret. and Math. Phys., 123:1 (2000), 436–445
1995
8.
A. Yu. Boldin, A. A. Bronnikov, V. V. Dmitrieva, R. A. Sharipov, “Complete normality conditions for the dynamical systems on Riemannian manifolds”, TMF, 103:2 (1995), 267–275; Theoret. and Math. Phys., 103:2 (1995), 550–555
A. Yu. Boldin, V. V. Dmitrieva, S. S. Safin, R. A. Sharipov, “Dynamical systems on a Riemannian manifold that admit normal shift”, TMF, 103:2 (1995), 256–266; Theoret. and Math. Phys., 103:2 (1995), 543–549