Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Glebov, Sergey Gennad'evich

Total publications: 25 (25)
in MathSciNet: 14 (14)
in zbMATH: 16 (16)
in Web of Science: 11 (11)
in Scopus: 9 (9)
Cited articles: 12
Citations: 67

Number of views:
This page:633
Abstract pages:1477
Full texts:546
References:231
Associate professor
Candidate of physico-mathematical sciences (1998)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:
Keywords: nonlinear differential equations; asymptotics.

Subject:

Nonlinear differential equations with small parameter

Biography

Graduated from Faculty of Mathematics of Bashkir State University (BSU) in 1965 (department of differential equations). Ph.D. thesis was defended in 1998.

   
Main publications:
  • O. M. Kiselev, S. G. Glebov. Asymptotic decsription of nonlinear resonance. ArXiv: math.DS # 0105011. http://xxx.lanl.gov/abs/math/0105011.

https://www.mathnet.ru/eng/person17553
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/358153

Full list of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)
1. O. M. Kiselev, S. G. Glebov, “The capture into parametric autoresonance”, Nonlinear Dynamics, 48:1–2 (2007), 217–230  crossref  mathscinet  zmath  isi  elib  scopus 15
2. O. M. Kiselev, S. G. Glebov, “An asymptotic solution slowly crossing the separatrix near a saddle–centre bifurcation point”, Nonlinearity, 16:1 (2003), 327–362  crossref  mathscinet  zmath  adsnasa  isi  scopus 14
3. S. Glebov, O. Kiselev, V. Lazarev, “Slow passage through resonance for a weakly nonlinear dispersive wave”, SIAM Journal of Applied Mathematics, 65:6 (2005), 2158–2177  crossref  mathscinet  zmath  isi  scopus 10
4. S. G. Glebov, O. M. Kiselev, V. A. Lazarev, “Birth of solitons during passage through local resonance”, Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S84–S90  mathnet  mathscinet  zmath  elib
5. S. Glebov, O. Kiselev, “The stimulated scattering of solitons on a resonance”, Journal of Nonlinear Mathematical Physics, 12:3 (2005), 330–341  crossref  mathscinet  zmath  adsnasa  isi  scopus 6
6. S. Glebov, O. Kiselev, N. Tarkhanov, “Weakly nonlinear dispersive waves under parametric resonance perturbation”, Studies in Applied Mathematics, 124:1 (2010), 19–37  crossref  mathscinet  zmath  isi  scopus 3
7. S. Glebov, O. Kiselev, N. Tarkhanov, “Autoresonance in a dissipative system”, Journal Physics A: Mathematical and Theoretical, 43:21 (2010), 215203 , 16 pp.  crossref  mathscinet  zmath  adsnasa  isi  scopus 3
8. S. G. Glebov, O. M. Kiselev, V. A. Lazarev, “The autoresonance threshold in a system of weakly coupled oscillators”, Proc. Steklov Inst. Math. (Suppl.), 259, suppl. 2 (2007), S111–S123  mathnet  crossref  elib  scopus
9. N. Gorbatova, O. Kiselev, S. Glebov, “Resonant excitation of nonlinear waves”, AIP Conference Proceedings, 834:1 (2006), 196–205  crossref  adsnasa  scopus 2
10. S. G. Glebov, “On a weakly nonlinear problem with local resonances”, Differential Equations, 31:8 (1995), 1354–1361  mathnet  mathscinet  zmath
11. S. Glebov, O. Kiselev, “The slow passage through the resonances and wave packets with the different carriers”, Dynamics of Partial Differential Equations, 2:3 (2005), 261–280  crossref  mathscinet  zmath  isi 1
12. L. A. Kalyakin, S. G. Glebov, “On the solvability of nonlinear equations of Shrödinger type in the class of rapidly oscillating functions”, Math. Notes, 56:1 (1994), 673–678  mathnet  crossref  mathscinet  zmath  isi
13. S. G. Glebov, O. M. Kiselev, N. N. Tarkhanov, Nonlinear Equations with Small Parameter, v. 2, De Gruyter Series in Nonlinear Analysis and Applications, 23/2, Waves and boundary problems, De Gruyter, Berlin, New York, 2018 (to appear) , 402 pp. www.degruyter.com/view/product/485040  zmath
14. S. G. Glebov, O. M. Kiselev, N. N. Tarkhanov, Nonlinear Equations with Small Parameter, v. 1, De Gruyter Series in Nonlinear Analysis and Applications, 23/1, Oscillations and resonances, De Gruyter, Berlin, New York, 2017 (to appear) , 361 pp. www.degruyter.com/view/product/211477  mathscinet  zmath
15. S. Glebov, N. Tarkhanov, System of nonlinear oscillators with dissipation. Initial interval of autoresonance, 2013 , 12 pp., arXiv: 1301.4792
16. S. Glebov, O. Kiselev, N. Tarkhanov, “Forced nonlinear resonance in a system of coupled oscillators”, Chaos, 21:2 (2011), 023109 , 7 pp.  crossref  mathscinet  zmath  adsnasa  isi  scopus
17. O. Kiselev, S. Glebov, Autoresonant germ in dissipative system, 2009 , 6 pp., arXiv: 0902.4595
18. S. Glebov, O. Kiselev, N. Tarkhanov, Autoresonance in a Dissipative System, 2009 , 22 pp., arXiv: 0912.0133
19. S. Glebov, O. Kiselev, N. Tarkhanov, Slow passage through parametric resonance for a weakly nonlinear dispersive wave, 2008 , 20 pp., arXiv: 0806.3338  zmath
20. O. Kiselev, Yu. Bagderina, S. Glebov, Scattering problem for the local parametric resonance equation, 2008 , 5 pp., arXiv: 0802.2849
21. O. M. Kiselev, S. G. Glebov, V. A. Lazarev, Resonant pumping in nonlinear Klein-Gordon equation and solitary packets of waves, 2004 , 21 pp., arXiv: math-ph/0410041
22. O. M. Kiselev, S. G. Glebov, Scattering of solitons on resonance, 2004 , 10 pp., arXiv: math-ph/0403038
23. S. G. Glebov, O. M. Kiselev, “Applicability of the WKB method in the perturbation problem for the equation of principal resonance”, Russian Journal of Mathematical Physics, 9:1 (2002), 60–83  mathscinet  zmath  isi
24. O. M. Kiselev, G. G. Glebov, Asymptotic description of nonlinear resonance, 2001 , 48 pp., arXiv: math/0105011
25. S. G. Glebov, “Resonance layers in the interactions of rapidly oscillating wave fields”, Theoret. and Math. Phys., 118:3 (1999), 295–300  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024