Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Dairbekov, Nurlan Slyamkhanovich

Statistics Math-Net.Ru
Total publications: 20
Scientific articles: 20

Number of views:
This page:1662
Abstract pages:3618
Full texts:1403
References:189
Doctor of physico-mathematical sciences (1996)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date: 24.11.1960
E-mail: ,
Keywords: quasiconformal mappings; mappings with bounded distortion; Beltrami equation; subelliptic equations; geodesic flow; boundary rigidity; ray transform.

Subject:

Systems are classified of partial differential equations whose solution classes are stable in the uniform norm. Properties of solutions are studied for multidimensional analogs of the Beltrami equation describing quasiregular functions of a complex variable. The theory is developed of quasiregular mappings in several spatial variables and a stability theorem is proved for this class. Mappings with bounded distortion on the Heisenberg groups with the Carnot–Caratheodory metric, as well as on more general two-step niltpotent Lie groups, have been defined and studied. Together with C. Croke and V. A. Sharafutdinov, a local boundary rigidity theorem is proved for Riemannian manifolds with above bounded curvature. Together with V. A. Sharafutdinov, a finiteness theorem is proved for infinitesimal isospectral deformations of manifolds whose geodesic flow is of Anosov type, and uniqueness is proved for solutions to some integral geometry problems on these manifolds.

Biography

Graduated from Faculty of Mathematics and Mechanics of Novosibirsk State State University in 1983 (department of mathematical analysis). Ph.D. thesis was defended in 1986. D.Sci. thesis was defended in 1996. A list of my works contains more than 30 titles.

   
Main publications:
  • Croke C., Dairbekov N. S., Sharafutdinov V. A. Local boundary rigidity of a compact Riemannian manifold with curvature bounded above // Trans. Amer. Math. Soc. 2000, 352, 3937–3956.

https://www.mathnet.ru/eng/person17460
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/223931
https://orcid.org/0000-0002-2725-7549

Publications in Math-Net.Ru Citations
2023
1. N. S. Dairbekov, O. M. Penkin, D. Savasteev, “Harnack's inequality for harmonic functions on stratified sets”, Sibirsk. Mat. Zh., 64:5 (2023),  971–981  mathnet
2018
2. N. S. Dairbekov, O. M. Penkin, L. O. Sarybekova, “An analog of the Sobolev inequality on a stratified set”, Algebra i Analiz, 30:5 (2018),  149–158  mathnet  mathscinet  elib; St. Petersburg Math. J., 30:5 (2019), 869–875  isi  scopus 3
3. N. S. Dairbekov, O. M. Penkin, L. O. Sarybekova, “The Poincaré inequality and $p$-connectedness of a stratified set”, Sibirsk. Mat. Zh., 59:6 (2018),  1291–1302  mathnet  elib; Siberian Math. J., 59:6 (2018), 1024–1033  isi  elib  scopus 4
2010
4. N. S. Dairbekov, V. A. Sharafutdinov, “On conformal Killing symmetric tensor fields on Riemannian manifolds”, Mat. Tr., 13:1 (2010),  85–145  mathnet  mathscinet; Siberian Adv. Math., 21:1 (2011), 1–41 27
2002
5. N. S. Dairbekov, “Stability of mappings with bounded distortion on a Heisenberg group”, Sibirsk. Mat. Zh., 43:2 (2002),  281–294  mathnet  mathscinet  zmath; Siberian Math. J., 43:2 (2002), 223–234  isi 7
2000
6. N. S. Dairbekov, “Mappings with bounded distortion on Heisenberg groups”, Sibirsk. Mat. Zh., 41:3 (2000),  567–590  mathnet  mathscinet  zmath; Siberian Math. J., 41:3 (2000), 465–486  isi 21
7. N. S. Dairbekov, “The limit of a sequence of mappings with bounded distortion on the Heisenberg group, and the local homeomorphism theorem”, Sibirsk. Mat. Zh., 41:2 (2000),  316–328  mathnet  mathscinet  zmath; Siberian Math. J., 41:2 (2000), 257–267  isi 3
8. N. S. Dairbekov, “On mappings with bounded distortion on the Heisenberg group”, Sibirsk. Mat. Zh., 41:1 (2000),  49–59  mathnet  mathscinet  zmath; Siberian Math. J., 41:1 (2000), 40–48  isi 10
1999
9. N. S. Dairbekov, “The morphism property for mappings with bounded distortion on the Heisenberg group”, Sibirsk. Mat. Zh., 40:4 (1999),  811–823  mathnet  mathscinet  zmath; Siberian Math. J., 40:4 (1999), 682–649  isi 8
1997
10. N. S. Dairbekov, “On the stability of a class of holomorphic functions in a closed domain”, Sibirsk. Mat. Zh., 38:5 (1997),  1047–1050  mathnet  mathscinet  zmath; Siberian Math. J., 38:5 (1997), 907–909  isi 2
1995
11. N. S. Dairbekov, “On the stability of classes of quasiregular mappings of several space variables”, Dokl. Akad. Nauk, 345:5 (1995),  596–598  mathnet  mathscinet  zmath
12. N. S. Dairbekov, “Stability of classes of quasiregular mappings in several spatial variables”, Sibirsk. Mat. Zh., 36:1 (1995),  47–59  mathnet  mathscinet  zmath; Siberian Math. J., 36:1 (1995), 43–54  isi 6
1993
13. N. S. Dairbekov, “Quasiregular mappings of several $n$-dimensional variables”, Sibirsk. Mat. Zh., 34:4 (1993),  87–102  mathnet  mathscinet  zmath; Siberian Math. J., 34:4 (1993), 669–682  isi 8
14. N. S. Dairbekov, “On removable singularities of solutions to first order elliptic systems with irregular coefficients”, Sibirsk. Mat. Zh., 34:1 (1993),  65–69  mathnet  mathscinet  zmath; Siberian Math. J., 34:1 (1993), 55–58  isi 2
1992
15. N. S. Dairbekov, “The concept of a quasiregular mapping of several $n$-dimensional variables”, Dokl. Akad. Nauk, 324:3 (1992),  511–514  mathnet  mathscinet  zmath; Dokl. Math., 45:3 (1992), 578–582 2
16. N. S. Dairbekov, “Removable singularities of locally quasiconformal mappings”, Sibirsk. Mat. Zh., 33:1 (1992),  193–195  mathnet  mathscinet  zmath; Siberian Math. J., 33:1 (1992), 159–161  isi 2
1987
17. O. L. Bezrukova, N. S. Dairbekov, A. P. Kopylov, “On mappings close in the $C$-norm to classes of solutions of linear elliptic systems of partial differential equations”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 7 (1987),  19–30  mathnet  mathscinet  zmath
18. N. S. Dairbekov, “On the smoothing of mappings that are close to solutions of first-order elliptic systems”, Sibirsk. Mat. Zh., 28:3 (1987),  70–72  mathnet  mathscinet  zmath; Siberian Math. J., 28:3 (1987), 408–411  isi 1
1986
19. N. S. Dairbekov, “On the stability of classes of conformal mappings on a plane and in a space”, Sibirsk. Mat. Zh., 27:5 (1986),  188–191  mathnet  mathscinet  zmath
1985
20. N. S. Dairbekov, A. P. Kopylov, “$\xi$-stability of classes of mappings, and systems of linear partial differential equations”, Sibirsk. Mat. Zh., 26:2 (1985),  73–90  mathnet  mathscinet  zmath; Siberian Math. J., 26:2 (1985), 216–230  isi 3

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024