Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kurta, Vasilii Vasil'evich

Statistics Math-Net.Ru
Total publications: 18
Scientific articles: 18

Number of views:
This page:2986
Abstract pages:3533
Full texts:1315
References:334
E-mail:

https://www.mathnet.ru/eng/person17317
List of publications on Google Scholar
https://zbmath.org/authors/ai:kurta.vasilii-v|kurta.vasiliy-v|kurta.vasyl-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/218417
https://elibrary.ru/author_items.asp?authorid=6149

Publications in Math-Net.Ru Citations
1999
1. V. V. Kurta, “On the absence of positive solutions of elliptic equations”, Mat. Zametki, 65:4 (1999),  552–561  mathnet  mathscinet  zmath; Math. Notes, 65:4 (1999), 462–469  isi 8
2. V. V. Kurta, “On the Nonexistence of Positive Solutions to Semilinear Elliptic Equations”, Trudy Mat. Inst. Steklova, 227 (1999),  162–169  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 227 (1999), 155–162 25
1997
3. V. V. Kurta, “On analogues of Finn's maximum principle for solutions of parabolic equations”, Uspekhi Mat. Nauk, 52:6(318) (1997),  169–170  mathnet  mathscinet  zmath; Russian Math. Surveys, 52:6 (1997), 1307–1309  isi  scopus
1995
4. V. V. Kurta, “On the comparison principle for quasilinear elliptic equations”, Dokl. Akad. Nauk, 345:2 (1995),  168–170  mathnet  mathscinet  zmath
5. V. V. Kurta, “On the comparison principle for second-order quasilinear elliptic equations”, Differ. Uravn., 31:2 (1995),  289–295  mathnet  mathscinet; Differ. Equ., 31:2 (1995), 266–272
1994
6. V. V. Kurta, “On the uniqueness of solutions of the Cauchy problem for second-order quasilinear parabolic equations”, Dokl. Akad. Nauk, 337:5 (1994),  574–576  mathnet  mathscinet  zmath; Dokl. Math., 50:1 (1995), 127–131
7. V. V. Kurta, “On the behavior of solutions of the Cauchy problem for second-order quasilinear parabolic equations”, Differ. Uravn., 30:10 (1994),  1782–1791  mathnet  mathscinet; Differ. Equ., 30:10 (1994), 1647–1655 1
8. V. V. Kurta, “A comparison principle for a family of quasilinear parabolic equations”, Uspekhi Mat. Nauk, 49:4(298) (1994),  167–168  mathnet  mathscinet  zmath; Russian Math. Surveys, 49:4 (1994), 165–166  isi
1993
9. V. V. Kurta, “On the behavior of solutions of a mixed initial-boundary value problem for an equation of non-Newtonian polytropic filtration”, Dokl. Akad. Nauk, 329:6 (1993),  698–700  mathnet  mathscinet  zmath; Dokl. Math., 47:2 (1993), 338–342
10. V. V. Kurta, “On the behavior of solutions of a mixed initial-boundary value problem for an equation of non-Newtonian polytropic filtration”, Differ. Uravn., 29:3 (1993),  402–413  mathnet  mathscinet; Differ. Equ., 29:3 (1993), 345–354
11. V. V. Kurta, “On the uniqueness of the Dirichlet problem of the mean curvature equation”, Mat. Zametki, 53:4 (1993),  53–61  mathnet  mathscinet  zmath  elib; Math. Notes, 53:4 (1993), 394–399  isi
1992
12. V. V. Kurta, “On Phragmén–Lindelöf theorems for semilinear equations”, Dokl. Akad. Nauk, 322:1 (1992),  38–40  mathnet  zmath
13. V. V. Kurta, “Qualitative properties of solutions of some classes of second-order quasilinear elliptic equations”, Differ. Uravn., 28:5 (1992),  867–873  mathnet  mathscinet; Differ. Equ., 28:5 (1992), 707–712
14. V. V. Kurta, “On the Tikhonov–Petrovskiĩ problem for second-order parabolic equations in noncylindrical domains”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 10,  87–88  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 36:10 (1992), 85–86
15. V. V. Kurta, “Phragmen–Lindelöf theorems for second-order semilinear equations with nonnegative characteristic form”, Mat. Zametki, 52:1 (1992),  62–67  mathnet  mathscinet  zmath; Math. Notes, 52:1 (1992), 676–680  isi
16. V. V. Kurta, “Phragmén-Lindelöf theorems for elliptic equations”, Uspekhi Mat. Nauk, 47:3(285) (1992),  165–166  mathnet  mathscinet  zmath; Russian Math. Surveys, 47:3 (1992), 180–181  isi 3
1991
17. V. V. Kurta, “Some qualitative properties of solutions of an equation of mean curvature type”, Dokl. Akad. Nauk SSSR, 320:4 (1991),  804–807  mathnet  mathscinet  zmath; Dokl. Math., 44:2 (1992), 544–547
1985
18. V. V. Kurta, “A distortion theorem for univalent analytic functions with quasiconformal extension”, Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 6,  77–78  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 29:6 (1985), 95–97

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024