Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Suleimanov, Bulat Irekovich

Total publications: 54 (53)
in MathSciNet: 37 (36)
in zbMATH: 19 (19)
in Web of Science: 27 (27)
in Scopus: 24 (24)
Cited articles: 40
Citations: 260
Presentations: 1

Number of views:
This page:2965
Abstract pages:12228
Full texts:4437
References:1433
Head Scientist Researcher
Doctor of physico-mathematical sciences (2009)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 27.05.1958
E-mail:
Keywords: catastrophe theory, asymptotics, symmetry, integrability.

Subject:

Scientific interests: Painleve ordinary differential equations, their higher analogues and applications, behaviour of solutions of PDE with small parameter near typical singularities of limiting equations. It is shown that universal special functions of wave catastrophes - solutions of nonlinear integrable PDE - are solutions of higher analogues of Painleve ODE.

Biography

Graduated from Bashikirian state unversity in 1980 (department of of differential equations). Ph.D. thesis was defended in 2010. A list of my works contains 37 titles.

   
Main publications:
  • Suleimanov B. I., Khabibullin I. T. Simmetrii uravneniya Kadomtseva–Petviashvili, izomonodromnye deformatsii i "nelineinye" obobscheniya nelineinykh spetsialnykh funktsii volnovykh katastrof // Teoreticheskaya i matematicheskaya fizika, 1993, 97, 2, 213–226.
  • Suleimanov B. I. Vozniknovenie bezdissipativnykh udarnykh voln i "neperturbativnaya" kvantovaya teoriya gravitatsii // Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 1994, 105, 5, 1089–1097.
  • Suleimanov B. I. Gamiltonova struktura uravnenii Penleve i metod izomonodromnykh deformatsii // Differentsialnye uravneniya, 1994, 30, 5, 791–795.
  • Kudashev V. R., Suleimanov B. I. Osobennosti nekotorykh tipichnykh protsessov samoproizvolnogo padeniya intensivnosti v neustoichivykh sredakh // Pisma v zhurnal eksperimentalnoi i teoreticheskoi fiziki, 1995, 62, 4, 358–363.
  • Kudashev V. R., Suleimanov B. I. Vliyanie maloi dissipatsii na protsessy zarozhdeniya odnomernykh udarnykh voln // Prikladnaya matematika i mekhanika. 2001, 65, 3, 456–466.

https://www.mathnet.ru/eng/person15619
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/210115

Full list of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

   2024
1. B. I. Suleimanov, A. M. Shavlukov, Mat. Zametki, 116:6 (2024), 971–986 (to appear)  mathnet

   2023
2. B. I. Suleimanov, “Zeros of solutions of third-order L–A pairs and linearizable ordinary differential equations”, Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S230–S238  mathnet  crossref  crossref  mathscinet  isi  elib  scopus

   2022
3. B. I. Suleimanov, A. M. Shavlukov, “Inheritance of Generic Singularities of Solutions of a Linear Wave Equation by Solutions of Isoentropic Gas Motion Equations”, Math. Notes, 112:4 (2022), 608–620  mathnet  crossref  crossref  mathscinet  scopus
4. A. V. Domrin, M. A. Shumkin, B. I. Suleimanov, “Meromorphy of solutions for a wide class of ordinary differential equations of Painlevé type”, Journal of Mathematical Physics, 63:2 (2022), 023501 (2022) (Published online) , 18 pp. https://aip.scitation.org/doi/10.1063/5.0075416, arXiv: https://arxiv.org/abs/2110.09858  crossref 1

   2021
5. B. I. Suleimanov, A. M. Shavlukov, “Integrable Abel equation and asymptotics of symmetry solutions of Korteweg-de Vries equation”, Ufa Math. J., 13:2 (2021), 99–106  mathnet  crossref  mathscinet  isi  scopus

   2022
6. B. I. Suleimanov, “Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom”, St. Petersburg Math. J., 33:6 (2022), 995–1009  mathnet  crossref

   2020
7. A. V. Domrin, B. I. Suleimanov, M. A. Shumkin, “Global Meromorphy of Solutions of the Painlevé Equations and Their Hierarchies”, Proc. Steklov Inst. Math., 311 (2020), 98–113  mathnet  crossref  crossref  mathscinet  isi  elib  scopus
8. B. I. Suleimanov, A. M. Shavlukov, “Tipichnaya provalnaya osobennost sborki reshenii uravnenii dvizheniya odnomernogo izoentropicheskogo gaza”, Izvestiya RAN. Seriya fizicheskaya., T. 84:# 5 (2020), S. 664–666.  crossref  elib
9. V. A. Pavlenko, B. I. Suleimanov, “Yavnye resheniya analogov vremennykh uravnenii Shredingera s gamiltonovoi sistemoi $H^{4+1}$.”, Izvestiya RAN. Seriya fizicheskaya., T. 84:# 5 (2020), S. 695–698  crossref 2
10. V. E. Adler, P. Winternitz, R. N. Garifullin, A. V. Zhiber, D. Levi, A. V. Mikhailov, I. Kh. Musin, F. W. Nijhoff, V. V. Sokolov, B. I. Suleimanov, E. V. Ferapontov, A. P. Fordy, I. T. Habibullin, I. Yu. Cherdantsev, R. A. Sharipov, R. S. Yulmukhametov, “In memory of Yamilov Ravil Islamovich”, Ufa Math. J., 12:3 (2020), 119–120  mathnet  mathscinet

   2019
11. B. I. Suleimanov, “On analogs of wave catastrophe functions that are solutions of nonlinear integrable equations”, Differential Equations, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 163, VINITI, Moscow, 2019, 81–95  mathnet  mathscinet

   2018
12. V. A. Pavlenko, B. I. Suleimanov, “Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system $H^{2+1+1+1}$”, Ufa Math. J., 10:4 (2018), 92–102  mathnet  crossref  mathscinet  isi  scopus

   2017
13. A. A. Ershov, B. I. Suleimanov, “Some Features of Bending of a Rod under a Strong Longitudinal Compression”, Russian Journal of Mathematical Physics, 24:2 (2017), 216–233  crossref  mathscinet  zmath  adsnasa  isi  scopus 2
14. B. I. Suleimanov, “Effect of a small dispersion on self-focusing in a spatially one-dimensional case”, JETP Letters, 106:6 (2017), 400–405  mathnet  crossref  crossref  adsnasa  isi  elib  scopus
15. V. A. Pavlenko, B. I. Suleimanov, ““Quantizations” of isomonodromic Hamilton system $H^{\frac{7}{2}+1}$”, Ufa Math. Journal, 9:4 (2017), 97–107  mathnet  crossref  isi  elib  scopus

   2016
16. D. P. Novikov, B. I. Suleimanov, ““Quantization” of an isomonodromic Hamiltonian Garnier system with two degrees of freedom”, Theoret. and Math. Phys., 187:1 (2016), 479–496  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  scopus
17. B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential”, Ufa Math. Journal, 8:3 (2016), 136–154  mathnet  crossref  mathscinet  isi  elib  elib  scopus

   2014
18. B. I. Suleimanov, ““Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom”, Funct. Anal. Appl., 48:3 (2014), 198–207  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus

   2013
19. B. I. Suleimanov, “Asymptotics of the Gurevich–Pitaevskii universal special solution of the Korteweg–de Vries equation as $|x|\to\infty$”, Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 137–145  mathnet  crossref  isi  elib  scopus

   2012
20. B. I. Suleimanov, “The “quantum” linearization of the Painlevé equations as a component of theier $L,A$ pairs”, Ufimsk. Mat. Zh., 4:2 (2012), 127–135  mathnet  elib
21. B. I. Suleimanov, “Generic singularities in solutions of the shallow water equations”, Doklady Mathematics, 85, no. 1, 2012, 125–128  crossref  mathscinet  zmath  elib  scopus 2

   2010
22. R. Garifullin, B. Suleimanov, N. Tarkhanov, “Phase shift in the Whitham zone for the Gurevich–Pitaevskii special solution of the Korteweg–de Vries equation”, Physics Letters A, 374:13 (2010), 1420–1424  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus 11
23. R. N. Garifullin, B. I. Suleimanov, “From weak discontinuities to nondissipative shock waves”, Journal of Experimental and Theoretical Physics, 110:1 (2010), 133–146  crossref  mathscinet  adsnasa  isi  scopus 15

   2008
24. B. I. Suleimanov, “On the Solution of Boundary-Value Problems of Kolmogorov–Petrovskii–Piskunov Type”, Math. Notes, 83:4 (2008), 564–572  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
25. B. I. Suleimanov, ““Quantizations” of the second Painlevé equation and the problem of the equivalence of its $L$$A$ pairs”, Theoret. and Math. Phys., 156:3 (2008), 1280–1291  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib  scopus

   2007
26. A. M. Il'in, B. I. Suleimanov, “Asymptotic behaviour of a special solution of Abel's equation relating to a cusp catastrophe. II. Large values of the parameter $t$”, Sb. Math., 198:9 (2007), 1299–1324  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus

   2006
27. A. M. Il'in, B. I. Suleimanov, “Asymptotic behaviour of a special solution of Abel's equation relating to a cusp catastrophe”, Sb. Math., 197:1 (2006), 53–67  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
28. B. I. Suleimanov, “On some typical features of motion with damping in the case of smooth inhomogeneity”, Doklady Mathematics, 73, no. 2, 2006, 299–301  crossref  mathscinet  zmath  elib  scopus 1

   2004
29. A. M. Il'in, B. I. Suleimanov, “Birth of step-like contrast structures connected with a cusp catastrophe”, Sb. Math., 195:12 (2004), 1727–1746  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus

   2003
30. A. M. Il'in, B. I. Suleimanov, “The coefficients of inner asymptotic expansions for solutions of some singular boundary value problems”, Dal'nevost. Mat. Zh., 4:1 (2003), 78–85  mathnet

   2002
31. A. M. Il'in, B. I. Suleimanov, “On two special functions related to fold singularities”, Doklady Mathematics, 66, no. 3, 2002, 327–329  zmath
32. B. I. Suleimanov, “Cusp catastrophe in slowly varying equilibriums”, Journal of Experimental and Theoretical Physics, 95:5 (2002), 944–956  crossref  mathscinet  adsnasa  isi  scopus 3
33. A. M. Il'in, B. I. Sulei'manov, “On two special functions associated with cusp-type singularities”, Dokl. Akad. Nauk, 387, no. 2, 2002

   2001
34. V. R. Kudashev, B. I. Suleimanov, “The effect of small dissipation on the onset of one-dimensional shock waves”, Journal of Applied Mathematics and Mechanics, 65:3 (2001), 441–451  crossref  mathscinet  zmath  adsnasa  isi  scopus 14

   1999
35. V. R. Kudashev, B. I. Suleimanov, “Small-amplitude dispersion oscillations on the background of the nonlinear geometric optic approximation”, Theoret. and Math. Phys., 118:3 (1999), 325–332  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
36. O. M. Kiselev, B. I. Suleimanov, “The solution of the Painleve equations as special functions of catastrophes, defined by a rejection in these equations of terms with derivative”, 1999, arXiv: solv-int/9902004

   1998
37. V. R. Kudashev, B. I. Suleimanov, “One-Parametric Family of the Double-Scaling Limits in the Hermitian Matrix Model $\Phi^6$: Onset of Nondissipative Shock Waves”, 1998, arXiv: hep-th/9811007

   1996
38. V. Kudashev, B. Suleimanov, “A soft mechanism for the generation of dissipationless shock waves”, Physics Letters A, 221:3 (1996), 204–208  crossref  mathscinet  adsnasa  isi  scopus 20

   1995
39. V. R. Kudashev, B. I. Suleimanov, “Characteristic features of some typical spontaneous intensity collapse processes in unstable media”, JETP Letters, 62 (1995), 358
40. B. I. Suleimanov, “Quantization of two-gap potentials in nonperturbative string theory and oscillations of the Gurevich-Pitaevskii nondissipative shock wave”, Physics of Atomic Nuclei, 58:6 (1995)

   1994
41. S. P. Balandin, B. I. Suleimanov, “Linearization of a Burgers-type system connected with the Hamiltonian structure of second-order ordinary differential equations”, Differ. Equ., 30:12 (1994), 1998–2000  mathnet  mathscinet
42. B. I. Suleimanov, “The Hamilton property of Painlevé equations and the method of isomonodromic deformations”, Differ. Equ., 30:5 (1994), 726–732  mathnet  mathscinet
43. B. I. Suleimanov, “Influence of weak nonlinearity on the high-frequency asymptotics in caustic rearrangements”, Theoret. and Math. Phys., 98:2 (1994), 132–138  mathnet  crossref  mathscinet  zmath  adsnasa  isi
44. B. I. Suleimanov, “ORIGINATION OF NONDISSIPATIVE SHOCK-WAVES AND NONPERTURBATIVE GRAVITATION THEORY”, ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 105:5 (1994), 1089-1097  mathscinet  isi

   1993
45. B. I. Suleimanov, I. T. Habibullin, “Symmetries of Kadomtsev–Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes”, Theoret. and Math. Phys., 97:2 (1993), 1250–1258  mathnet  crossref  mathscinet  zmath  adsnasa  isi
46. B. I. Suleimanov, “Solution of the Korteweg-de Vries equation which arises near the breaking point in problems with a slight dispersion”, JETP Letters, 58 (1993), 849–849  mathscinet  adsnasa  isi

   1992
47. B. I. Suleimanov, “A “nonlinear” generalization of special functions of wave catastrophes described by double integrals”, Math. Notes, 52:5 (1992), 1146–1149  mathnet  crossref  mathscinet  zmath  isi

   1993
48. B. I. Suleimanov, “The isomonodromic Stokes phenomenon and nonlinear effects near a cuspidal caustic”, Dokl. Math., 46:2 (1993), 220–224  mathnet  mathscinet

   1995
49. B. I. Suleimanov, “The second Painlevé equation at a problem about nonlinear effects near caustics”, J. Math. Sci., 73:4 (1995), 482–493  mathnet  crossref  mathscinet  zmath

   1990
50. B. I. Suleimanov, Differ. Uravn., 26:3 (1990), 540–542  mathnet  mathscinet  zmath

   1987
51. B. I. Suleimanov, “THE RELATION BETWEEN ASYMPTOTIC PROPERTIES OF SOLUTIONS OF THE 2ND PAINLEVE EQUATION IN DIFFERENT DIRECTIONS TOWARDS INFINITY”, Differential Equations, 23:5 (1987), 569-576  mathnet  mathscinet

   1986
52. B. I. Suleimanov, “On asymptotics of regular solutions for a special kind of Painlevé V equation”, Appendix, 1 (1986), 230–260

   1984
53. V. Yu. Novokshenov, B. I. Suleimanov, “The isomonodromic deformation method and asymptotics of the second and third Painleve transcendents”, Usp. Mat. Nauk, 39:4 (1984), 114–115  mathnet  mathscinet 25
54. A. M. Il'in, B. I. Suleimanov, “The asymptotics of the Green function for a second-order elliptic equation near the boundary of the domain”, Math. USSR-Izv., 23:3 (1984), 579–594  mathnet  crossref  mathscinet  zmath

Presentations in Math-Net.Ru
1. Isomonodromic quantization of the second Painlev'e equation by means of conservative Hamiltonian systems with two degrees of freedom
B. Suleimanov
Mathematical Physics, Dynamical Systems and Infinite-Dimensional Analysis – 2021
July 9, 2021 16:10   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024