Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
1. |
U. S. Rakhmonov, J. Sh. Abdullayev, “On volumes of matrix ball of third type and generalized Lie balls”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:4 (2019), 548–557 ;
|
10
[x]
|
2. |
Gulmirza Kh. Khudayberganov, Jonibek Sh. Abdullayev, “Relationship between the Bergman and Cauchy-Szegö in the domains $\tau ^{+}(n-1)$ i $\Re _{IV}^{n}$”, Zhurn. SFU. Ser. Matem. i fiz., 13:5 (2020), 559–567 ;
|
7
[x]
|
3. |
G. Khudayberganov, A. M. Khalknazarov, J. Sh. Abdullayev, “Laplace and Hua Luogeng operators”, Russian Math. (Iz. VUZ), 64:3 (2020), 66–71 |
4. |
G. Khudayberganov, J. Sh. Abdullayev, “Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 31:2 (2021), 296–310 ;
|
4
[x]
|
5. |
Ufa Math. J., 13:3 (2021), 191–205 |
6. |
Uktam S. Rakhmonov, Jonibek Sh. Abdullayev, “On properties of the second type matrix ball $B_{m,n}^{(2)}$ from space ${\mathbb C}^{n}[m\times m]$”, Zhurn. SFU. Ser. Matem. i fiz., 15:3 (2022), 329–342 ;
|
2
[x]
|
7. |
J. Sh. Abdullayev, “Estimates the Bergman kernel for classical domains É. Cartan's”, Chebyshevskii sb., 22:3 (2021), 20–31 ;
|
2
[x]
|
8. |
Jonibek Sh. Abdullayev, “An analogue of Bremermann's theorem on finding the Bergman kernel for the Cartesian product of the classical domains ${{\Re }_{I}}\left( m,k \right)$ and ${{\Re }_{II}}\left( n \right)$”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 3, 88–96 ;
|
2
[x]
|
9. |
Gulmirza Kh. Khudayberganov, Jonibek Sh. Abdullayev, “Laurent-Hua Loo-Keng series with respect to the matrix ball from space ${{\mathbb{C}}^{n}}\left[ m\times m \right]$”, Zhurn. SFU. Ser. Matem. i fiz., 14:5 (2021), 589–598 ; |
10. |
G. Khudaiberganova, Zh. Sh. Abdullaeva, “Nekotorye svoistva matrichnogo shara vtorogo tipa”, Mezhdunarodnaya nauchnaya konferentsiya «Kompleksnyi analiz i ego prilozheniya».Sbornik materialov., 36 str. (Kazanskii (Privolzhskii) federalnyi universitet, Kazan, 2020, 28 (opublikovana online)), https://kpfu.ru/math/conference/mezhdunarodnaya-nauchnaya-konferenciyakompleksnyj, (Kazan, 24–28 avgusta 2020 g.),, 2020, 33-35 (Published online) https://kpfu.ru/portal/docs/F_1218277235/complan2020.pdf |
|