|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
V. V. Provotorov, S. M. Sergeev, “Mathematical modeling of physical processesin composition media”, Russian Universities Reports. Mathematics, 29:146 (2024), 188–203 |
|
2023 |
2. |
A. P. Zhabko, V. V. Provotorov, S. M. Sergeev, “Optimal control of the Navier — Stokes system with a space variable in a network-like domain”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023), 549–562 |
1
|
3. |
A. P. Zhabko, V. V. Karelin, V. V. Provotorov, S. M. Sergeev, “Optimal control of thermal and wave processes in composite materials”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:3 (2023), 403–418 |
1
|
4. |
N. A. Zhabko, V. V. Karelin, V. V. Provotorov, S. M. Sergeev, “The method of penalty functions in the analysis of optimal control problems of Navier — Stokes evolutionary systems with a spatial variable in a network-like domain”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:2 (2023), 162–175 |
1
|
|
2022 |
5. |
A. P. Zhabko, V. V. Provotorov, S. M. Sergeev, “Stability of operator-difference schemes with weights for the hyperbolic equation in the space of summable functions with carriers in the network-like domain”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:3 (2022), 425–437 |
1
|
|
2021 |
6. |
V. V. Provotorov, S. M. Sergeev, V. N. Hoang, “Point control of a differential-difference system with distributed parameters on the graph”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:3 (2021), 277–286 |
13
|
|
2020 |
7. |
V. V. Provotorov, S. M. Sergeev, V. N. Hoang, “Countable stability of a weak solution of a parabolic differential-difference system with distributed parameters on the graph”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:4 (2020), 402–414 |
12
|
|
2019 |
8. |
V. V. Provotorov, S. M. Sergeev, A. A. Part, “Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:1 (2019), 107–117 |
26
|
|
Organisations |
|
|
|
|