|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
S. D. Gilev, “Generation of defects during shock compression of aluminum”, Fizika Goreniya i Vzryva, 59:6 (2023), 136–146 ; Combustion, Explosion and Shock Waves, 59:6 (2023), 795–804 |
1
|
2. |
S. D. Gilev, “Electrical resistance of aluminum under shock compression: experimental data”, Fizika Goreniya i Vzryva, 59:1 (2023), 129–136 ; Combustion, Explosion and Shock Waves, 59:1 (2023), 118–124 |
1
|
|
2022 |
3. |
S. D. Gilev, “Isotherm of aluminum based on the generalized equation for the Grüneisen coefficient”, Fizika Goreniya i Vzryva, 58:2 (2022), 109–117 ; Combustion, Explosion and Shock Waves, 58:2 (2022), 226–233 |
1
|
|
2021 |
4. |
S. D. Gilev, “Nonequilibrium of the physical state of copper under impact compression”, Fizika Goreniya i Vzryva, 57:3 (2021), 135–142 ; Combustion, Explosion and Shock Waves, 57:3 (2021), 378–384 |
2
|
|
2020 |
5. |
S. D. Gilev, “Low-parametric equation of state of aluminum”, TVT, 58:2 (2020), 179–187 ; High Temperature, 58:2 (2020), 166–172 |
12
|
|
2019 |
6. |
S. D. Gilev, “Electrical resistance of copper at high pressures and temperatures: equilibrium model and generation of defects of the crystal structure under shock compression”, Fizika Goreniya i Vzryva, 55:5 (2019), 116–125 ; Combustion, Explosion and Shock Waves, 55:5 (2019), 620–628 |
5
|
|
2018 |
7. |
S. D. Gilev, “Small-parameter equation of state of copper”, Fizika Goreniya i Vzryva, 54:4 (2018), 107–122 ; Combustion, Explosion and Shock Waves, 54:4 (2018), 482–495 |
15
|
8. |
S. D. Gilev, V. S. Prokop'ev, “Cascade magnetocumulative generator on the basis of inductively coupled circuits with a variable coupling coefficient”, Prikl. Mekh. Tekh. Fiz., 59:3 (2018), 14–25 ; J. Appl. Mech. Tech. Phys., 59:3 (2018), 397–406 |
|
2017 |
9. |
S. D. Gilev, V. S. Prokop'ev, “Generation of electromagnetic energy in a magnetic cumulation generator with the use of inductively coupled circuits with a variable coupling coefficient”, Prikl. Mekh. Tekh. Fiz., 58:4 (2017), 3–13 ; J. Appl. Mech. Tech. Phys., 58:4 (2017), 571–579 |
|
2016 |
10. |
S. D. Gilev, V. S. Prokop'ev, “Electrical resistance of copper under shock compression: Experimental data”, Fizika Goreniya i Vzryva, 52:1 (2016), 121–130 ; Combustion, Explosion and Shock Waves, 52:1 (2016), 107–116 |
5
|
|
2015 |
11. |
S. D. Gilev, V. S. Prokop'ev, “Electrical resistance of high-pressure phases of tin under shock compression”, Fizika Goreniya i Vzryva, 51:4 (2015), 94–100 ; Combustion, Explosion and Shock Waves, 51:4 (2015), 482–487 |
|
2014 |
12. |
S. D. Gilev, “Phase transformations in shock-compressed ytterbium”, Fizika Goreniya i Vzryva, 50:2 (2014), 115–123 ; Combustion, Explosion and Shock Waves, 50:2 (2014), 227–234 |
2
|
|
2013 |
13. |
S. D. Gilev, “Electrical conductivity of copper powders under shock compression”, Fizika Goreniya i Vzryva, 49:3 (2013), 114–121 ; Combustion, Explosion and Shock Waves, 49:3 (2013), 359–366 |
2
|
|
2011 |
14. |
S. D. Gilev, “Measurement of electrical conductivity of condensed substances in shock waves (Review)”, Fizika Goreniya i Vzryva, 47:4 (2011), 3–23 ; Combustion, Explosion and Shock Waves, 47:4 (2011), 375–393 |
10
|
|
2008 |
15. |
S. D. Gilev, “Experimental study of shock-wave magnetic cumulation”, Fizika Goreniya i Vzryva, 44:2 (2008), 106–116 ; Combustion, Explosion and Shock Waves, 44:2 (2008), 218–227 |
1
|
|
2007 |
16. |
S. D. Gilev, “Electrode gauge as an instrument for studying shock compression and metallization of the substance”, Fizika Goreniya i Vzryva, 43:5 (2007), 116–125 ; Combustion, Explosion and Shock Waves, 43:5 (2007), 598–606 |
1
|
|
2006 |
17. |
S. D. Gilev, V. F. Anisichkin, “Interaction of aluminum with detonation products”, Fizika Goreniya i Vzryva, 42:1 (2006), 120–129 ; Combustion, Explosion and Shock Waves, 42:1 (2006), 107–115 |
20
|
|
2005 |
18. |
S. D. Gilev, “Electrical conductivity of metal powders under shock compression”, Fizika Goreniya i Vzryva, 41:5 (2005), 128–139 ; Combustion, Explosion and Shock Waves, 41:5 (2005), 599–609 |
10
|
|
2003 |
19. |
S. D. Gilev, T. Yu. Mikhailova, “Electromagnetic field formed by shock compression of a conducting magnetic”, Fizika Goreniya i Vzryva, 39:6 (2003), 107–118 ; Combustion, Explosion and Shock Waves, 39:6 (2003), 704–714 |
2
|
|
2002 |
20. |
S. D. Gilev, A. M. Trubachev, “Detonation properties and electrical conductivity of explosive–metal additive mixtures”, Fizika Goreniya i Vzryva, 38:2 (2002), 104–120 ; Combustion, Explosion and Shock Waves, 38:2 (2002), 219–234 |
14
|
|
2001 |
21. |
S. D. Gilev, A. M. Ryabchun, “Current waves generated by detonation of an explosive in a magnetic field”, Fizika Goreniya i Vzryva, 37:6 (2001), 93–101 ; Combustion, Explosion and Shock Waves, 37:6 (2001), 698–706 |
2
|
22. |
S. D. Gilev, “Application of the electromagnetic model for diagnosing shock–wave processes in metals”, Fizika Goreniya i Vzryva, 37:2 (2001), 121–127 ; Combustion, Explosion and Shock Waves, 37:2 (2001), 230–235 |
2
|
|
2000 |
23. |
S. D. Gilev, T. Yu. Mikhailova, “Electromagnetic field and current waves in a conductor compressed by a shock wave in a magnetic field”, Fizika Goreniya i Vzryva, 36:6 (2000), 153–163 ; Combustion, Explosion and Shock Waves, 36:6 (2000), 816–825 |
3
|
|
1997 |
24. |
S. D. Gilev, “Effect of the conductivity of a shock-compressed substance on the electromagnetic response of a shock-formed set of conductors”, Fizika Goreniya i Vzryva, 33:4 (1997), 128–136 ; Combustion, Explosion and Shock Waves, 33:4 (1997), 504–511 |
|
1996 |
25. |
S. D. Gilev, “Shock-induced conductivity waves in a conductor placed in an external magnetic field”, Fizika Goreniya i Vzryva, 32:6 (1996), 116–122 ; Combustion, Explosion and Shock Waves, 32:6 (1996), 696–701 |
2
|
26. |
E. I. Bichenkov, S. D. Gilev, A. M. Ryabchun, A. M. Trubachev, “Magnetic-field compression by shock-induced conduction waves in high-porosity materials”, Prikl. Mekh. Tekh. Fiz., 37:6 (1996), 15–25 ; J. Appl. Mech. Tech. Phys., 37:6 (1996), 785–793 |
3
|
|
1995 |
27. |
S. D. Gilev, “Shock-induced conductivity waves in metallic samples”, Fizika Goreniya i Vzryva, 31:4 (1995), 109–116 ; Combustion, Explosion and Shock Waves, 31:4 (1995), 500–506 |
2
|
|
1994 |
28. |
S. D. Gilev, “Using liquid explosives for welding”, Fizika Goreniya i Vzryva, 30:5 (1994), 115–117 ; Combustion, Explosion and Shock Waves, 30:5 (1994), 682–684 |
1
|
29. |
S. D. Gilev, “Electromagnetic effects in a measurement cell for investigating the electrical properties of shock-compressed substances”, Fizika Goreniya i Vzryva, 30:2 (1994), 71–76 ; Combustion, Explosion and Shock Waves, 30:2 (1994), 204–208 |
2
|
|
1989 |
30. |
E. I. Bichenkov, S. D. Gilev, A. M. Trubachev, “Shock-induced conduction waves in electrophysical experiments”, Prikl. Mekh. Tekh. Fiz., 30:2 (1989), 132–145 ; J. Appl. Mech. Tech. Phys., 30:2 (1989), 291–303 |
7
|
|
1988 |
31. |
S. D. Gilev, A. M. Trubachev, “Measurement of high electrical conductivity in silicon in shock waves”, Prikl. Mekh. Tekh. Fiz., 29:6 (1988), 61–67 ; J. Appl. Mech. Tech. Phys., 29:6 (1988), 818–824 |
3
|
|
1987 |
32. |
E. I. Bichenkov, S. D. Gilev, V. S. Prokop'ev, V. I. Telenkov, A. M. Trubachev, “Cascade magnetocumulative generator with flux interception”, Prikl. Mekh. Tekh. Fiz., 28:4 (1987), 125–131 ; J. Appl. Mech. Tech. Phys., 28:4 (1987), 587–592 |
33. |
E. I. Bichenkov, S. D. Gilev, A. M. Ryabchun, A. M. Trubachev, “Shock-wave method of generating megaGauss magnetic fields”, Prikl. Mekh. Tekh. Fiz., 28:3 (1987), 15–24 ; J. Appl. Mech. Tech. Phys., 28:3 (1987), 331–339 |
7
|
|
1983 |
34. |
S. D. Gilev, A. M. Trubachev, “Obtaining strong magnetic fields with magnetocumulative generators based on a porous material”, Prikl. Mekh. Tekh. Fiz., 24:5 (1983), 37–41 ; J. Appl. Mech. Tech. Phys., 24:5 (1983), 639–643 |
4
|
|
1980 |
35. |
E. I. Bichenkov, S. D. Gilev, A. M. Trubachev, “Magnetic course generators using the transition of a semiconductor material into a conducting state”, Prikl. Mekh. Tekh. Fiz., 21:5 (1980), 125–129 ; J. Appl. Mech. Tech. Phys., 21:5 (1980), 678–682 |
6
|
|
Organisations |
|
|
|
|