S. D. Gilev, “Generation of defects during shock compression of aluminum”, Fizika Goreniya i Vzryva, 59:6 (2023), 136–146; Combustion, Explosion and Shock Waves, 59:6 (2023), 795–804
S. D. Gilev, “Electrical resistance of aluminum under shock compression: experimental data”, Fizika Goreniya i Vzryva, 59:1 (2023), 129–136; Combustion, Explosion and Shock Waves, 59:1 (2023), 118–124
S. D. Gilev, “Isotherm of aluminum based on the generalized equation for the Grüneisen coefficient”, Fizika Goreniya i Vzryva, 58:2 (2022), 109–117; Combustion, Explosion and Shock Waves, 58:2 (2022), 226–233
S. D. Gilev, “Nonequilibrium of the physical state of copper under impact compression”, Fizika Goreniya i Vzryva, 57:3 (2021), 135–142; Combustion, Explosion and Shock Waves, 57:3 (2021), 378–384
S. D. Gilev, “Electrical resistance of copper at high pressures and temperatures: equilibrium model and generation of defects of the crystal structure under shock compression”, Fizika Goreniya i Vzryva, 55:5 (2019), 116–125; Combustion, Explosion and Shock Waves, 55:5 (2019), 620–628
S. D. Gilev, “Small-parameter equation of state of copper”, Fizika Goreniya i Vzryva, 54:4 (2018), 107–122; Combustion, Explosion and Shock Waves, 54:4 (2018), 482–495
S. D. Gilev, V. S. Prokop'ev, “Cascade magnetocumulative generator on the basis of inductively coupled circuits with a variable coupling coefficient”, Prikl. Mekh. Tekh. Fiz., 59:3 (2018), 14–25; J. Appl. Mech. Tech. Phys., 59:3 (2018), 397–406
2017
9.
S. D. Gilev, V. S. Prokop'ev, “Generation of electromagnetic energy in a magnetic cumulation generator with the use of inductively coupled circuits with a variable coupling coefficient”, Prikl. Mekh. Tekh. Fiz., 58:4 (2017), 3–13; J. Appl. Mech. Tech. Phys., 58:4 (2017), 571–579
2016
10.
S. D. Gilev, V. S. Prokop'ev, “Electrical resistance of copper under shock compression: Experimental data”, Fizika Goreniya i Vzryva, 52:1 (2016), 121–130; Combustion, Explosion and Shock Waves, 52:1 (2016), 107–116
S. D. Gilev, V. S. Prokop'ev, “Electrical resistance of high-pressure phases of tin under shock compression”, Fizika Goreniya i Vzryva, 51:4 (2015), 94–100; Combustion, Explosion and Shock Waves, 51:4 (2015), 482–487
2014
12.
S. D. Gilev, “Phase transformations in shock-compressed ytterbium”, Fizika Goreniya i Vzryva, 50:2 (2014), 115–123; Combustion, Explosion and Shock Waves, 50:2 (2014), 227–234
S. D. Gilev, “Electrical conductivity of copper powders under shock compression”, Fizika Goreniya i Vzryva, 49:3 (2013), 114–121; Combustion, Explosion and Shock Waves, 49:3 (2013), 359–366
S. D. Gilev, “Measurement of electrical conductivity of condensed substances in shock waves (Review)”, Fizika Goreniya i Vzryva, 47:4 (2011), 3–23; Combustion, Explosion and Shock Waves, 47:4 (2011), 375–393
S. D. Gilev, “Experimental study of shock-wave magnetic cumulation”, Fizika Goreniya i Vzryva, 44:2 (2008), 106–116; Combustion, Explosion and Shock Waves, 44:2 (2008), 218–227
S. D. Gilev, “Electrode gauge as an instrument for studying shock compression and metallization of the substance”, Fizika Goreniya i Vzryva, 43:5 (2007), 116–125; Combustion, Explosion and Shock Waves, 43:5 (2007), 598–606
S. D. Gilev, V. F. Anisichkin, “Interaction of aluminum with detonation products”, Fizika Goreniya i Vzryva, 42:1 (2006), 120–129; Combustion, Explosion and Shock Waves, 42:1 (2006), 107–115
S. D. Gilev, “Electrical conductivity of metal powders under shock compression”, Fizika Goreniya i Vzryva, 41:5 (2005), 128–139; Combustion, Explosion and Shock Waves, 41:5 (2005), 599–609
S. D. Gilev, T. Yu. Mikhailova, “Electromagnetic field formed by shock compression of a conducting magnetic”, Fizika Goreniya i Vzryva, 39:6 (2003), 107–118; Combustion, Explosion and Shock Waves, 39:6 (2003), 704–714
S. D. Gilev, A. M. Trubachev, “Detonation properties and electrical conductivity of explosive–metal additive mixtures”, Fizika Goreniya i Vzryva, 38:2 (2002), 104–120; Combustion, Explosion and Shock Waves, 38:2 (2002), 219–234
S. D. Gilev, A. M. Ryabchun, “Current waves generated by detonation of an explosive in a magnetic field”, Fizika Goreniya i Vzryva, 37:6 (2001), 93–101; Combustion, Explosion and Shock Waves, 37:6 (2001), 698–706
S. D. Gilev, “Application of the electromagnetic model for diagnosing shock–wave processes in metals”, Fizika Goreniya i Vzryva, 37:2 (2001), 121–127; Combustion, Explosion and Shock Waves, 37:2 (2001), 230–235
S. D. Gilev, T. Yu. Mikhailova, “Electromagnetic field and current waves in a conductor compressed by a shock wave in a magnetic field”, Fizika Goreniya i Vzryva, 36:6 (2000), 153–163; Combustion, Explosion and Shock Waves, 36:6 (2000), 816–825
S. D. Gilev, “Effect of the conductivity of a shock-compressed substance on the electromagnetic response of a shock-formed set of conductors”, Fizika Goreniya i Vzryva, 33:4 (1997), 128–136; Combustion, Explosion and Shock Waves, 33:4 (1997), 504–511
1996
25.
S. D. Gilev, “Shock-induced conductivity waves in a conductor placed in an external magnetic field”, Fizika Goreniya i Vzryva, 32:6 (1996), 116–122; Combustion, Explosion and Shock Waves, 32:6 (1996), 696–701
E. I. Bichenkov, S. D. Gilev, A. M. Ryabchun, A. M. Trubachev, “Magnetic-field compression by shock-induced conduction waves in high-porosity materials”, Prikl. Mekh. Tekh. Fiz., 37:6 (1996), 15–25; J. Appl. Mech. Tech. Phys., 37:6 (1996), 785–793
S. D. Gilev, “Shock-induced conductivity waves in metallic samples”, Fizika Goreniya i Vzryva, 31:4 (1995), 109–116; Combustion, Explosion and Shock Waves, 31:4 (1995), 500–506
S. D. Gilev, “Using liquid explosives for welding”, Fizika Goreniya i Vzryva, 30:5 (1994), 115–117; Combustion, Explosion and Shock Waves, 30:5 (1994), 682–684
S. D. Gilev, “Electromagnetic effects in a measurement cell for investigating the electrical properties of shock-compressed substances”, Fizika Goreniya i Vzryva, 30:2 (1994), 71–76; Combustion, Explosion and Shock Waves, 30:2 (1994), 204–208
E. I. Bichenkov, S. D. Gilev, A. M. Trubachev, “Shock-induced conduction waves in electrophysical experiments”, Prikl. Mekh. Tekh. Fiz., 30:2 (1989), 132–145; J. Appl. Mech. Tech. Phys., 30:2 (1989), 291–303
S. D. Gilev, A. M. Trubachev, “Measurement of high electrical conductivity in silicon in shock waves”, Prikl. Mekh. Tekh. Fiz., 29:6 (1988), 61–67; J. Appl. Mech. Tech. Phys., 29:6 (1988), 818–824
E. I. Bichenkov, S. D. Gilev, V. S. Prokop'ev, V. I. Telenkov, A. M. Trubachev, “Cascade magnetocumulative generator with flux interception”, Prikl. Mekh. Tekh. Fiz., 28:4 (1987), 125–131; J. Appl. Mech. Tech. Phys., 28:4 (1987), 587–592
33.
E. I. Bichenkov, S. D. Gilev, A. M. Ryabchun, A. M. Trubachev, “Shock-wave method of generating megaGauss magnetic fields”, Prikl. Mekh. Tekh. Fiz., 28:3 (1987), 15–24; J. Appl. Mech. Tech. Phys., 28:3 (1987), 331–339
S. D. Gilev, A. M. Trubachev, “Obtaining strong magnetic fields with magnetocumulative generators based on a porous material”, Prikl. Mekh. Tekh. Fiz., 24:5 (1983), 37–41; J. Appl. Mech. Tech. Phys., 24:5 (1983), 639–643
E. I. Bichenkov, S. D. Gilev, A. M. Trubachev, “Magnetic course generators using the transition of a semiconductor material into a conducting state”, Prikl. Mekh. Tekh. Fiz., 21:5 (1980), 125–129; J. Appl. Mech. Tech. Phys., 21:5 (1980), 678–682