Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Tedeev, Anatolii Fedorovich

Statistics Math-Net.Ru
Total publications: 21
Scientific articles: 19
Presentations: 1

Number of views:
This page:11124
Abstract pages:7092
Full texts:2482
References:730
Senior Researcher
Doctor of physico-mathematical sciences (1998)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:
   
Main publications:
  • Tedeev, A. F. Initial-boundary value problems for quasilinear degenerate parabolic equations with damping. The Neumann problem. (Russian) Ukrain. Mat. Zh. 58 (2006), no. 2, 272–282; translation in Ukrainian Math. J. 58 (2006), no. 2, 304–317.
  • Afanas'eva, N. V.; Tedeev, A. F. Theorems on the existence and nonexistence of solutions to the Cauchy problem for degenerate parabolic equations with a nonlocal source. (Russian) Ukrain. Mat. Zh. 57 (2005), no. 11, 1443–1464; translation in Ukrainian Math. J. 57 (2005), no. 11, 1687–1711.
  • Andreucci, Daniele; Tedeev, Anatoli F. Universal bounds at the blow-up time for nonlinear parabolic equations. Adv. Differential Equations 10 (2005), no. 1, 89–120.
  • Andreucci, D.; Tedeev, A. F.; Ughi, M. The Cauchy problem for degenerate parabolic equations with source and damping. Ukr. Mat. Visn. 1 (2004), no. 1, 1–19; translation in Ukr. Math. Bull. 1 (2004), no. 1, 1–23.
  • Afanaseva, N. V.; Tedeev, A. F. Fujita-type theorems for quasilinear parabolic equations in the case of slowly vanishing initial data. (Russian) Mat. Sb. 195 (2004), no. 4, 3–22; translation in Sb. Math. 195 (2004), no. 3–4, 459–478.
  • Tedeev, A. F. Conditions for the time-global existence and nonexistence of a compact support of solutions of the Cauchy problem for quasilinear degenerate parabolic equations. (Russian) Sibirsk. Mat. Zh. 45 (2004), no. 1, 189–200; translation in Siberian Math. J. 45 (2004), no. 1, 155–164.
  • Andreucci, D.; Cirmi, G. R.; Leonardi, S.; Tedeev, A. F. Large time behavior of solutions to the Neumann problem for a quasilinear second order degenerate parabolic equation in domains with noncompact boundary. J. Differential Equations 174 (2001), no. 2, 253–288.
  • Andreucci, Daniele; Tedeev, Anatoli F. Finite speed of propagation for the thin-film equation and other higher-order parabolic equations with general nonlinearity. Interfaces Free Bound. 3 (2001), no. 3, 233–264.
  • Andreucci, Daniele; Tedeev, Anatoli F. Sharp estimates and finite speed of propagation for a Neumann problem in domains narrowing at infinity. Adv. Differential Equations 5 (2000), no. 7–9, 833–860.
  • Bonafede, S.; Cirmi, G. R.; Tedeev, A. F. Finite speed of propagation for the porous media equation with lower order terms. Discrete Contin. Dynam. Systems 6 (2000), no. 2, 305–314.
  • Andreucci, Daniele; Tedeev, Anatoli F. A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary. J. Math. Anal. Appl. 231 (1999), no. 2, 543–567.
  • Andreucci, Daniele; Tedeev, Anatoli F. Optimal bounds and blow up phenomena for parabolic problems in narrowing domains. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6, 1163–1180.
  • Bonafede, S.; Cirmi, G. R.; Tedeev, A. F. Finite speed of propagation for the porous media equation. SIAM J. Math. Anal. 29 (1998), no. 6, 1381–1398.
  • Skrypnik, I. I.; Tedeev, A. F. Local estimates for the solution of the Cauchy problem for a second-order quasilinear parabolic equation. The weighted case. I. (Russian) Sibirsk. Mat. Zh. 38 (1997), no. 1, 193–207, iv; translation in Siberian Math. J. 38 (1997), no. 1, 165–178.
  • Tedeev, A. F. Local and global properties of solutions of the Cauchy–Dirichlet problem for a second-order quasilinear parabolic equation in an unbounded domain. (Russian) Differ. Uravn. 32 (1996), no. 8, 1071–1077, 1149; translation in Differential Equations 32 (1996), no. 8, 1075–1082.

https://www.mathnet.ru/eng/person14122
List of publications on Google Scholar
https://zbmath.org/authors/ai:tedeev.anatoli-f
https://mathscinet.ams.org/mathscinet/MRAuthorID/202681
https://orcid.org/0000-0001-7883-9795

Publications in Math-Net.Ru Citations
2023
1. Al. F. Tedeev, An. F. Tedeev, “Large time decay estimates of the solution to the Cauchy problem of doubly degenerate parabolic equations with damping”, Vladikavkaz. Mat. Zh., 25:1 (2023),  93–104  mathnet  mathscinet
2022
2. L. F. Dzagoeva, A. F. Tedeev, “Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous density”, Vladikavkaz. Mat. Zh., 24:3 (2022),  78–86  mathnet  mathscinet 2
2020
3. Z. V. Besaeva, A. F. Tedeev, “The decay rate of the solution to the Cauchy problem for doubly nonlinear parabolic equation with absorption”, Vladikavkaz. Mat. Zh., 22:1 (2020),  12–32  mathnet
2012
4. A. V. Martynenko, An. F. Tedeev, V. N. Shramenko, “The Cauchy problem for a degenerate parabolic equation with inhomogeneous density and source in the class of slowly decaying initial data”, Izv. RAN. Ser. Mat., 76:3 (2012),  139–156  mathnet  mathscinet  zmath  elib; Izv. Math., 76:3 (2012), 563–580  isi  scopus 14
5. V. A. Markasheva, An. F. Tedeev, “The Cauchy problem for a quasilinear parabolic equation with gradient absorption”, Mat. Sb., 203:4 (2012),  131–160  mathnet  mathscinet  zmath  elib; Sb. Math., 203:4 (2012), 581–611  isi  scopus 4
2009
6. V. A. Markasheva, A. F. Tedeev, “Local and Global Estimates of the Solutions of the Cauchy Problem for Quasilinear Parabolic Equations with a Nonlinear Operator of Baouendi–Grushin Type”, Mat. Zametki, 85:3 (2009),  395–407  mathnet  mathscinet  zmath; Math. Notes, 85:3 (2009), 385–396  isi  scopus 4
2008
7. A. V. Martynenko, A. F. Tedeev, “On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source”, Zh. Vychisl. Mat. Mat. Fiz., 48:7 (2008),  1214–1229  mathnet  elib; Comput. Math. Math. Phys., 48:7 (2008), 1145–1160  isi  scopus 29
2007
8. S. P. Degtyarev, A. F. Tedeev, “$L_1$$L_\infty$ estimates of solutions of the Cauchy problem for an anisotropic degenerate parabolic equation with double non-linearity and growing initial data”, Mat. Sb., 198:5 (2007),  45–66  mathnet  mathscinet  zmath  elib; Sb. Math., 198:5 (2007), 639–660  isi  scopus 18
9. A. V. Martynenko, A. F. Tedeev, “Cauchy problem for a quasilinear parabolic equation with a source term and an inhomogeneous density”, Zh. Vychisl. Mat. Mat. Fiz., 47:2 (2007),  245–255  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 47:2 (2007), 238–248  scopus 30
2004
10. N. V. Afanasieva, A. F. Tedeev, “Fujita type theorems for quasilinear parabolic equations with initial data slowly decaying to zero”, Mat. Sb., 195:4 (2004),  3–22  mathnet  mathscinet  zmath; Sb. Math., 195:4 (2004), 459–478  isi  scopus 17
11. A. F. Tedeev, “Conditions for the time global existence and nonexistence of a compact support of solutions to the Cauchy problem for quasilinear degenerate parabolic equations”, Sibirsk. Mat. Zh., 45:1 (2004),  189–200  mathnet  mathscinet  zmath; Siberian Math. J., 45:1 (2004), 155–164  isi 32
1997
12. I. I. Skrypnik, A. F. Tedeev, “Local estimates for the solution of the Cauchy problem for a second-order quasilinear parabolic equation. The weighted case. I”, Sibirsk. Mat. Zh., 38:1 (1997),  193–207  mathnet  mathscinet; Siberian Math. J., 38:1 (1997), 165–178  isi 2
1996
13. A. F. Tedeev, “Local and global properties of solutions of the Cauchy–Dirichlet problem for a second-order quasilinear parabolic equation in an unbounded domain”, Differ. Uravn., 32:8 (1996),  1071–1077  mathnet  mathscinet; Differ. Equ., 32:8 (1996), 1075–1082
1995
14. A. F. Tedeev, “Estimate of the rate of stabilization of the solution of the first initial-boundary problem for the equation of a porous medium in an unbounded region”, Mat. Zametki, 57:3 (1995),  473–476  mathnet  mathscinet  zmath  elib; Math. Notes, 57:3 (1995), 329–331  isi
1991
15. A. F. Tedeev, “Estimates for the rate of stabilization as $t\to\infty$ of the solution of the second mixed problem for a second-order quasilinear parabolic equation”, Differ. Uravn., 27:10 (1991),  1795–1806  mathnet  mathscinet  zmath; Differ. Equ., 27:10 (1991), 1274–1283 8
16. A. F. Tedeev, “Stabilization of the solution of the third mixed problem for second-order quasilinear parabolic equations in a noncylindrical domain”, Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 1,  63–73  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 35:1 (1991), 75–87 3
1989
17. A. F. Tedeev, “Stabilization of solutions of the first mixed problem for a higher-order quasilinear parabolic equation”, Differ. Uravn., 25:3 (1989),  490–498  mathnet  mathscinet; Differ. Equ., 25:3 (1989), 346–352 12
1985
18. A. F. Tedeev, A. E. Shishkov, “Behavior of solutions and subsolutions of quasilinear parabolic equations in unbounded domains and in the neighborhood of a boundary point”, Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 9,  77–79  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 29:9 (1985), 109–113
1984
19. A. F. Tedeev, A. E. Shishkov, “Qualitative properties of solutions and subsolutions of quasilinear elliptic equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 1,  62–68  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 28:1 (1984), 74–82 2

2023
20. E. S. Kamenetskiĭ, R. Ch. Kulaev, A. G. Kusraev, R. M. Mnukhin, R. D. Nedin, A. F. Tedeev, Zh. D. Totieva, O. V. Yavruyan, “Alexander Ovanesovich Vatulyan (on his 70th anniversary)”, Vladikavkaz. Mat. Zh., 25:4 (2023),  143–147  mathnet
2021
21. O. G. Avsyankin, M. I. Karyakin, V. V. Kravchenko, A. G. Kusraev, Z. A. Kusraeva, A. F. Tedeev, “Alexey Nikolaevich Karapetyants (on the occasion of his 50th birthday)”, Vladikavkaz. Mat. Zh., 23:4 (2021),  131–132  mathnet

Presentations in Math-Net.Ru
1. Some remarks on the Sobolev inequality in Riemannian manifolds
A. F. Tedeev
Seminar on nonlinear problems of partial differential equations and mathematical physics
May 25, 2021 19:30   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024