Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
2024 |
1. |
A. Tselishchev, “Littlewood–Paley–Rubio de Francia inequality for unbounded Vilenkin systems”, J. Approx. Theory, 298 (2024), 106006 , 31 pp. |
2. |
A. Tselishchev, “On multipliers into martingale $SL^\infty$ spaces for arbitrary filtrations”, Math. Z., 307 (2024), 15 , 18 pp. |
|
2022 |
3. |
V. Borovitskiy, N. Osipov, A. Tselishchev, “Burkholder meets Gundy: Bellman function method for general operators on martingales”, Adv. Math., 410 (2022), 108746 , 22 pp. |
|
2021 |
4. |
V. A. Borovitskii, N. N. Osipov, A. S. Tselishchev, “On the Bellman function method for operators on martingales”, Dokl. Math., 103:3 (2021), 118–121 |
5. |
A. S. Tselishchev, “A Littlewood-Paley-Rubio de Francia inequality for bounded Vilenkin systems”, Sb. Math., 212:10 (2021), 1491–1502 |
6. |
A. Tselishchev, “On the vector-valued extension of Littlewood–Paley–Rubio de Francia inequality for Walsh functions”, Investigations on linear operators and function theory. Part 49, Zap. Nauchn. Sem. POMI, 503, POMI, St. Petersburg, 2021, 137–153 |
7. |
A. Tselishchev, “Absence of local unconditional structure in spaces of smooth functions on the torus of arbitrary dimension”, Studia Math., 261 (2021), 207–225 |
|
2020 |
8. |
A. Tselishchev, “Absence of local unconditional structure in spaces of smooth functions on the two-dimensional torus”, Investigations on linear operators and function theory. Part 48, Zap. Nauchn. Sem. POMI, 491, POMI, St. Petersburg, 2020, 153–172 |
9. |
A. Tselishchev, I. Vasiliev, “Littlewood–Paley characterization of BMO and Triebel–Lizorkin spaces”, Math. Nachr., 293 (2020), 2029–2043
|
1
[x]
|
|
2019 |
10. |
A. S. Tselishchev, “Duality in a stability problem for some functionals arising in interpolation theory”, J. Math. Sci. (N. Y.), 243:6 (2019), 960–964 |
11. |
A. S. Tselishchev, “Stability of nearly optimal decompositions in Fourier analysis”, J. Math. Sci. (N. Y.), 243:6 (2019), 949–959 |
|
2018 |
12. |
I. Vasilyev, A. Tselishchev, “On an equivalent norm on $\mathrm{BMO}$”, J. Math. Sci. (N. Y.), 234:3 (2018), 290–302 |
|