01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date:
26.11.1983
Keywords:
integro-differential equation,
integral equation,
integral transforms,
operator equation,
boundary singular point,
manifold solution,
integral representation.
Subject:
Investigation of some class integro-differential equation with singular point in the kernel.
Investigation of some integral transfors.
Investigation of convolution type integral equation
Main publications:
Zaripov S. K., “Ob odnom klasse modelnogo integro-differentsialnogo uravneniya pervogo poryadka s odnoi singulyarnoi tochkoi v yadre”, Vestnik Tadzhikskogo natsionalnogo universiteta, 1:3 (2015), 27–32
Zaripov S. K., “Ob odnom klasse modelnykh integro-differentsialnykh uravnenii pervogo poryadka so sverkh singulyarnoi tochkoi v yadre”, Vestnik Tadzhikskogo natsionalnogo universiteta, 1:6(191) (2015), 6–12
Zaripov S. K., “Postroenie analoga teoremy Fredgolma dlya odnogo klassa modelnykh integro-differentsialnykh uravnenii pervogo poryadka s logarifmicheskoi osobennostyu v yadre”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki:21(2) (2017), 236–248
Tursun K. Yuldashev, Sarvar K Zarifzoda, “Inverse problem for Fredholm integro-differential equation with final redefinition conditions at the end of the interval”, Nanosistemy: fizika, khimiya, matematika, 13:5 (2022), 483–490;
2020
2.
T. K. Yuldashev, S. K. Zarifzoda, “New Type Super Singular Integro-Differential Equation and Its Conjugate Equation”, Lobachevskii Journal of Mathematics, 41:6 (2020), 1123–1130
T. K. Yuldashev, S. K. Zarifzoda, “Mellin Transform and Integro-Differential Equations with Logarithmic Singularity in the Kernel”, Lobachevskii Journal of Mathematics, 41:9 (2020), 1910–1917
S. K. Zarifzoda, R. N. Odinaev, “Investigation of some classes of second order partial integro-differential equations with a power-logarithmic singularity in the kernel”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 67, 40–54
2017
5.
S. K. Zaripov, “A Construction of analog of Fredgolm theorems for one class of first order model integro-differential equation with logarithmic singularity in the kernel”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017), 236–248
6.
S. K. Zaripov, “Construction of an analog of the Fredholm theorem for a class of model first order integro-differential equations with a singular point in the kernel”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 46, 24–35
7.
S. K. Zaripov, “A new solution for one-class model integro-differential equations of first order with singularity in the kernel”, Mathematical Physics and Computer Simulation, 20:4 (2017), 68–75
2009
8.
N. Radzhabov, S. K. Zaripov, “Reshenie nemodelnogo lineinogo obyknovennogo differentsialnogo uravneniya vtorogo poryadka s dvumya granichnymi singulyarnymi tochkami”, Vestnik Tadzhikskogo gosudarstvennogo natsionalnogo universiteta, 2009, no. 1(49), 3-14
9.
N. Radzhabov, S. K. Zaripov, “K teorii odnogo klassa nemodelnogo lineinogo obyknovennogo differentsialnogo uravneniya tretego poryadka s dvumya granichnymi singulyarnymi tochkami”, Vestnik Tadzhikskogo gosudarstvennogo natsionalnogo universiteta, 2009, no. 1(134), 7-16
2008
10.
S. K. Zaripov, “Lineinoe obyknovennoe differentsialnoe uravnenie vtorogo poryadka s dvumya granichnymi singulyarnymi tochkami”, Vestnik Tadzhikskogo gosudarstvennogo natsionalnogo universiteta, 2008, no. 1(42), 37-46