Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Akopyan, Ripsimå Sårgoåvna

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 8

Number of views:
This page:476
Abstract pages:1556
Full texts:425
References:273
Associate professor
Candidate of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person114384
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru Citations
2023
1. A. V. Loboda, R. S. Akopyan, V. V. Krutskikh, “On 7-dimensional algebras of holomorphic vector fields in $ \Bbb C^4 $, having a 5-dimensional abelian ideal”, Dal'nevost. Mat. Zh., 23:1 (2023),  55–80  mathnet 1
2. R. S. Akopyan, B. M. Darinskii, “On the Orbits of 4-Dimensional Representations of the 3-Dimensional Heisenberg Algebra”, Mat. Zametki, 114:2 (2023),  306–311  mathnet; Math. Notes, 114:2 (2023), 265–270  scopus
2020
3. Alexander V. Loboda, Ripsime S. Akopyan, Vladislav V. Krutskikh, “On the orbits of nilpotent 7-dimensional lie algebras in 4-dimensional complex space”, J. Sib. Fed. Univ. Math. Phys., 13:3 (2020),  360–372  mathnet  isi 7
2019
4. R. S. Akopyan, A. V. Loboda, “On holomorphic realizations of 5-dimensional Lie algebras”, Algebra i Analiz, 31:6 (2019),  1–37  mathnet  elib; St. Petersburg Math. J., 31:6 (2020), 911–937  isi  scopus 2
5. R. S. Akopyan, A. V. Loboda, “On Holomorphic Realizations of Nilpotent Lie Algebras”, Funktsional. Anal. i Prilozhen., 53:2 (2019),  59–63  mathnet  mathscinet  elib 6
2016
6. R. S. Akopyan, “Lindelef type theorems for the minimal surface at infinity”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 5(36),  7–12  mathnet
7. R. S. Akopyan, “On limit value of the Gaussian curvature of the minimal surface at infinity”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016, no. 1(32),  6–10  mathnet 1
2014
8. R. S. Akopyan, “Some estimates of the asymptotic behavior of the minimal surface over strip domain”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2014, no. 3(22),  6–12  mathnet

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024