|
2-years impact-factor Math-Net.Ru of «Matematicheskii Sbornik» journal, 2023
2-years impact-factor Math-Net.Ru of the journal in 2023 is calculated
as the number of citations in 2023 to the scientific papers published during
2021–2022.
The table below contains the list of citations in 2023 to the papers
published in 2021–2022. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2023 |
1.014 |
146 |
148 |
80 |
6.8% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
V. A. Topchii, “Svoistva kriticheskikh vetvyaschikhsya sluchainykh bluzhdanii na pryamoi pri uslovii nevyrozhdeniya”, Diskret. matem., 35:1 (2023), 107–127 |
→ |
Critical Galton-Watson branching processes with a countable set of types and infinite second moments V. A. Vatutin, E. E. Dyakonova, V. A. Topchii Mat. Sb., 212:1 (2021), 3–27
|
|
2. |
A. Kh. Galstyan, “Ustoichivost granitsy v probleme Ferma — Shteinera v giperprostranstvakh nad konechnomernymi normirovannymi prostranstvami”, Chebyshevskii sb., 24:2 (2023), 81–128 |
→ |
The Fermat-Steiner problem in the space of compact subsets of $\mathbb R^m$ endowed with the Hausdorff metric A. Kh. Galstyan, A. O. Ivanov, A. A. Tuzhilin Mat. Sb., 212:1 (2021), 28–62
|
|
3. |
Vladislav S. Medvedev, Evgeny V. Zhuzhoma, “Smale Regular and Chaotic A-Homeomorphisms and A-Diffeomorphisms”, Regul. Chaotic Dyn., 28:2 (2023), 131–147 |
→ |
Necessary and sufficient conditions for the conjugacy of Smale regular homeomorphisms E. V. Zhuzhoma, V. S. Medvedev Mat. Sb., 212:1 (2021), 63–77
|
|
4. |
D. I. Borisov, “Operatornye otsenki v dvumernykh zadachakh s chastoi smenoi v sluchae malykh chastei s usloviem Dirikhle”, Tr. IMM UrO RAN, 29, № 1, 2023, 36–55 |
→ |
Approximation of resolvents in homogenization of fourth-order elliptic operators S. E. Pastukhova Mat. Sb., 212:1 (2021), 119–142
|
5. |
S. E. Pastukhova, “Ob operatornykh otsenkakh usredneniya dlya ellipticheskikh sistem vysokogo poryadka”, Matem. zametki, 114:3 (2023), 370–389 |
→ |
Approximation of resolvents in homogenization of fourth-order elliptic operators S. E. Pastukhova Mat. Sb., 212:1 (2021), 119–142
|
6. |
T. A. Suslina, “Teoretiko-operatornyi podkhod k usredneniyu uravnenii tipa Shredingera s periodicheskimi koeffitsientami”, UMN, 78:6(474) (2023), 47–178 |
→ |
Approximation of resolvents in homogenization of fourth-order elliptic operators S. E. Pastukhova Mat. Sb., 212:1 (2021), 119–142
|
7. |
A. A. Miloslova, T. A. Suslina, “Homogenization of the higher-order parabolic equations with periodic coefficients”, J. Math. Sci., 277:6 (2023), 959 |
→ |
Approximation of resolvents in homogenization of fourth-order elliptic operators S. E. Pastukhova Mat. Sb., 212:1 (2021), 119–142
|
8. |
D. I. Borisov, “Homogenization for operators with arbitrary perturbations in coefficients”, Journal of Differential Equations, 369 (2023), 41 |
→ |
Approximation of resolvents in homogenization of fourth-order elliptic operators S. E. Pastukhova Mat. Sb., 212:1 (2021), 119–142
|
9. |
D. I. Borisov, D. M. Polyakov, “Resolvent convergence for differential–difference operators with small variable translations”, Mathematics, 11:20 (2023), 4260 |
→ |
Approximation of resolvents in homogenization of fourth-order elliptic operators S. E. Pastukhova Mat. Sb., 212:1 (2021), 119–142
|
10. |
V. A. Slousch, T. A. Suslina, “Operatornye otsenki pri usrednenii ellipticheskikh operatorov vysokogo poryadka s periodicheskimi koeffitsientami”, Algebra i analiz, 35:2 (2023), 107–173 |
→ |
Approximation of resolvents in homogenization of fourth-order elliptic operators S. E. Pastukhova Mat. Sb., 212:1 (2021), 119–142
|
11. |
A. Piatnitski, V. Sloushch, T. Suslina, E. Zhizhina, “On operator estimates in homogenization of nonlocal operators of convolution type”, Journal of Differential Equations, 352 (2023), 153 |
→ |
Approximation of resolvents in homogenization of fourth-order elliptic operators S. E. Pastukhova Mat. Sb., 212:1 (2021), 119–142
|
|
12. |
V. A. Abrashkin, “Ramification filtration and differential forms”, Izv. RAN. Ser. matem., 87:3 (2023), 5–22 |
→ |
Ramification filtration via deformations V. A. Abrashkin Mat. Sb., 212:2 (2021), 3–37
|
|
13. |
A. T. Fomenko, V. V. Vedyushkina, “Billiardy i integriruemye sistemy”, UMN, 78:5(473) (2023), 93–176 |
→ |
Topological analysis of a billiard bounded by confocal quadrics in a potential field S. E. Pustovoitov Mat. Sb., 212:2 (2021), 81–105
|
|
14. |
N. V. Laktionova, K. V. Runovskii, “Pryamye teoremy priblizheniya periodicheskikh funktsii s vysokoi obobschennoi gladkostyu”, Matem. zametki, 113:3 (2023), 477–480 |
→ |
Multiplicator type operators and approximation of periodic functions of one variable by trigonometric polynomials K. V. Runovskii Mat. Sb., 212:2 (2021), 106–137
|
|
15. |
O. Bezushchak, A. Petravchuk, E. Zelmanov, “Automorphisms and derivations of affine commutative and PI-algebras”, Trans. Amer. Math. Soc., 377:2 (2023), 1335 |
→ |
Maximal Lie subalgebras among locally nilpotent derivations A. A. Skutin Mat. Sb., 212:2 (2021), 138–146
|
|
16. |
A. Mandal, “The Demailly systems with the vortex ansatz”, Bulletin des Sciences Mathématiques, 187 (2023), 103307 |
→ |
Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles J.-P. Demailly Mat. Sb., 212:3 (2021), 39–53
|
17. |
K.-R. Wu, “Positively curved Finsler metrics on vector bundles, II”, Pacific J. Math., 326:1 (2023), 161 |
→ |
Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles J.-P. Demailly Mat. Sb., 212:3 (2021), 39–53
|
18. |
V. P. Pingali, “The Demailly system for a direct sum of ample line bundles on Riemann surfaces”, Calc. Var., 62:6 (2023), 172 |
→ |
Hermitian-Yang-Mills approach to the conjecture of Griffiths on the positivity of ample vector bundles J.-P. Demailly Mat. Sb., 212:3 (2021), 39–53
|
|
19. |
D. Levchenko, “Birational invariants of toric orbifold surfaces”, Ann. Univ. Ferrara, 69 (2023), 463–471 |
→ |
Birational types of algebraic orbifolds A. Kresch, Yu. Tschinkel Mat. Sb., 212:3 (2021), 54–67
|
|
20. |
Y. Sano, “Weight polytopes and energy functionals of toric varieties”, Peking Math. J., 2023 |
→ |
Uniform $\mathrm{K}$-stability modulo a subgroup Y. Li, G. Tian, X. Zhu Mat. Sb., 212:3 (2021), 68–87
|
|
|
Total publications: |
5100 |
Scientific articles: |
5051 |
Authors: |
2891 |
Citations: |
59992 |
Cited articles: |
4464 |
|
Impact Factor Web of Science |
|
for 2023:
0.800 |
|
for 2022:
0.800 |
|
for 2021:
1.274 |
|
for 2020:
0.986 |
|
for 2019:
0.800 |
|
for 2018:
1.057 |
|
for 2017:
0.865 |
|
for 2016:
0.721 |
|
for 2015:
0.526 |
|
for 2014:
0.510 |
|
for 2013:
0.497 |
|
for 2012:
0.595 |
|
for 2011:
0.567 |
|
for 2010:
0.535 |
|
for 2009:
0.468 |
|
for 2008:
0.415 |
|
for 2007:
0.359 |
|
for 2006:
0.295 |
|
for 2005:
0.370 |
|
for 2004:
0.453 |
|
for 2003:
0.353 |
|
Scopus Metrics |
|
2023 |
CiteScore |
1.400 |
|
2023 |
SNIP |
1.081 |
|
2023 |
SJR |
0.554 |
|
2022 |
SJR |
0.571 |
|
2021 |
SJR |
0.843 |
|
2020 |
SJR |
1.158 |
|
2019 |
CiteScore |
1.400 |
|
2019 |
SJR |
0.386 |
|
2018 |
CiteScore |
0.680 |
|
2018 |
SJR |
0.888 |
|
2017 |
CiteScore |
0.420 |
|
2017 |
SNIP |
0.713 |
|
2017 |
SJR |
0.472 |
|
2016 |
CiteScore |
0.380 |
|
2016 |
SNIP |
0.715 |
|
2016 |
SJR |
0.452 |
|
2015 |
CiteScore |
0.460 |
|
2015 |
SNIP |
1.022 |
|
2015 |
IPP |
0.439 |
|
2015 |
SJR |
0.537 |
|
2014 |
CiteScore |
0.330 |
|
2014 |
SNIP |
0.927 |
|
2014 |
IPP |
0.320 |
|
2014 |
SJR |
0.470 |
|
2013 |
SNIP |
0.970 |
|
2013 |
IPP |
0.423 |
|
2013 |
SJR |
0.533 |
|
2012 |
SNIP |
0.763 |
|
2012 |
IPP |
0.314 |
|
2012 |
SJR |
0.379 |
|