|
2-years impact-factor Math-Net.Ru of «Kvantovaya Elektronika» journal, 2021
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2021 |
1.368 |
405 |
554 |
230 |
20% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
I. Carneiro, S. Carvalho, R. Henrique, A. Selifonov, L. Oliveira, V. V. Tuchin, IEEE J. Sel. Top. Quantum Electron., 27:4 (2021) |
→ |
Measuring optical properties of human liver between 400 and 1000 nm I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V. V. Tuchin Kvantovaya Elektronika, 49:1 (2019), 13–19
|
2. |
X. Li, B. Xie, M. Wu, J. Zhao, Zh. Xu, L. Liu, J. Quant. Spectrosc. Radiat. Transf., 259 (2021), 107410 |
→ |
Measuring optical properties of human liver between 400 and 1000 nm I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V. V. Tuchin Kvantovaya Elektronika, 49:1 (2019), 13–19
|
3. |
J. Huang, A. Wiacek, K. M. Kempski, T. Palmer, J. Izzi, S. Beck, M. A. l. Bell, Biomed. Opt. Express, 12:11 (2021), 7049–7050 |
→ |
Measuring optical properties of human liver between 400 and 1000 nm I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V. V. Tuchin Kvantovaya Elektronika, 49:1 (2019), 13–19
|
4. |
L. Fernandes, S. Carvalho, I. Carneiro, R. Henrique, V. V. Tuchin, H. P. Oliveira, L. M. Oliveira, Chaos, 31:5 (2021), 053118 |
→ |
Measuring optical properties of human liver between 400 and 1000 nm I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V. V. Tuchin Kvantovaya Elektronika, 49:1 (2019), 13–19
|
5. |
J. Huang, A. Wiacek, K. M. Kempski, Th. Palmer, J. Izzi, S. Beck, M. A. Lediju Bell, Biomed. Opt. Express, 12:3 (2021), 1205–1216 |
→ |
Measuring optical properties of human liver between 400 and 1000 nm I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V. V. Tuchin Kvantovaya Elektronika, 49:1 (2019), 13–19
|
|
6. |
H. Zhang, M. Singh, A. Nair, K. V. Larin, S. R. Aglyamov, Photonics, 8:6 (2021), 207 |
→ |
Measuring the elastic wave velocity in the lens of the eye as a function of intraocular pressure using optical coherent elastography C. Wu, S. R. Aglyamov, H. Zhang, K. V. Larin Kvantovaya Elektronika, 49:1 (2019), 20–24
|
7. |
Peijun Gong, Matt S. Hepburn, Ken Y. Foo, Stephen A. Boppart, Brendan F. Kennedy, Optical Coherence Elastography, 2021, 9-1 |
→ |
Measuring the elastic wave velocity in the lens of the eye as a function of intraocular pressure using optical coherent elastography C. Wu, S. R. Aglyamov, H. Zhang, K. V. Larin Kvantovaya Elektronika, 49:1 (2019), 20–24
|
|
8. |
A. A. Kurnikov, K. G. Pavlova, A. G. Orlova, A. V. Khilov, V. V. Perekatova, A. V. Kovalchuk, P. V. Subochev, Kvantovaya elektronika, 51:5 (2021), 383–388 |
→ |
Bimodal imaging of functional changes in blood flow using optoacoustic and optical coherent angiography A. G. Orlova, P. V. Subochev, A. A. Moiseev, E. O. Smolina, S. Yu. Ksenofontov, M. Yu. Kirillin, N. M. Shakhova Kvantovaya Elektronika, 49:1 (2019), 25–28
|
|
9. |
A. A. Boyko, E. Yu. Erushin, N. Yu. Kostyukova, I. B. Miroshnichenko, D. B. Kolker, Instrum. Exp. Tech., 64:2 (2021), 254–258 |
→ |
Broadband tunable source of mid-IR laser radiation for photoacoustic spectroscopy D. B. Kolker, I. V. Sherstov, N. Yu. Kostyukova, A. A. Boyko, Yu. V. Kistenev, B. N. Nyushkov, K. G. Zenov, A. G. Shadrintseva, N. N. Tretyakova Kvantovaya Elektronika, 49:1 (2019), 29–34
|
10. |
V. Petrov, V. V. Badikov, D. V. Badikov, G. S. Shevyrdyaeva, K. Kato, K. Miyata, K. V. Mitin, L. Wang, Z. Heiner, V. Panyutin, J. Opt. Soc. Am. B-Opt. Phys., 38:8 (2021), B46–B58 |
→ |
Broadband tunable source of mid-IR laser radiation for photoacoustic spectroscopy D. B. Kolker, I. V. Sherstov, N. Yu. Kostyukova, A. A. Boyko, Yu. V. Kistenev, B. N. Nyushkov, K. G. Zenov, A. G. Shadrintseva, N. N. Tretyakova Kvantovaya Elektronika, 49:1 (2019), 29–34
|
|
11. |
N. Ozana, Z. Zalevsky, Appl. Phys. Lett., 118:24 (2021), 240503 |
→ |
Coherent elastographic tomography via speckle time multiplexing A. Schwarz, N. Ozana, R. Califa, A. Shemer, H. Genish, Z. Zalevsky Kvantovaya Elektronika, 49:1 (2019), 35–42
|
|
12. |
A. V. Khilov, E. A. Sergeeva, D. A. Kurakina, I. V. Turchin, M. Yu. Kirillin, Kvantovaya elektronika, 51:2 (2021), 95–103 |
→ |
Complementary bimodal approach to monitoring of photodynamic therapy with targeted nanoconstructs: numerical simulations M. Yu. Kirillin, D. A. Kurakina, V. V. Perekatova, A. G. Orlova, E. A. Sergeeva, A. V. Khilov, P. V. Subochev, I. V. Turchin, S. Mallidi, T. Hasan Kvantovaya Elektronika, 49:1 (2019), 43–51
|
|
13. |
A. G. Shubnyi, V. S. Zhigarkov, V. I. Yusupov, A. P. Sviridov, Kvantovaya elektronika, 51:1 (2021), 8–16 |
→ |
Experimental modelling of the physical process of laser tattoo removal A. V. Belikov, A. A. Shamova, G. D. Shandybina, E. B. Yakovlev Kvantovaya Elektronika, 49:1 (2019), 52–58
|
|
14. |
D. D. Yakovlev, E. A. Sagaidachnaya, D. A. Yakovlev, V. I. Kochubei, Kvantovaya elektronika, 51:1 (2021), 43–51 |
→ |
Effect of light scattering on biological tissue thermometry from photoluminescence spectra of up-conversion nanoparticles I. Yu. Yanina, E. K. Volkova, E. A. Sagaidachnaya, V. I. Kochubey, V. V. Tuchin Kvantovaya Elektronika, 49:1 (2019), 59–62
|
|
15. |
A. V. Khilov, E. A. Sergeeva, D. A. Kurakina, I. V. Turchin, M. Yu. Kirillin, Kvantovaya elektronika, 51:2 (2021), 95–103 |
→ |
Monitoring of chlorin-based photosensitiser localisation with dual-wavelength fluorescence imaging: numerical simulations A. V. Khilov, D. A. Kurakina, I. V. Turchin, M. Yu. Kirillin Kvantovaya Elektronika, 49:1 (2019), 63–69
|
16. |
M. Kirillin, D. Kurakina, A. Khilov, A. Orlova, M. Shakhova, N. Orlinskaya, E. Sergeeva, Biomed. Opt. Express, 12:2 (2021), 872–892 |
→ |
Monitoring of chlorin-based photosensitiser localisation with dual-wavelength fluorescence imaging: numerical simulations A. V. Khilov, D. A. Kurakina, I. V. Turchin, M. Yu. Kirillin Kvantovaya Elektronika, 49:1 (2019), 63–69
|
17. |
Mikhail Kirillin, Daria Kurakina, Aleksandr Khilov, Anna Orlova, Maria Shakhova, Ksenia Pavlova, Valeria Perekatova, Natalia Orlinskaya, Ekaterina Sergeeva, Lothar D. Lilge, Zhiwei Huang, Translational Biophotonics: Diagnostics and Therapeutics, 2021, 55 |
→ |
Monitoring of chlorin-based photosensitiser localisation with dual-wavelength fluorescence imaging: numerical simulations A. V. Khilov, D. A. Kurakina, I. V. Turchin, M. Yu. Kirillin Kvantovaya Elektronika, 49:1 (2019), 63–69
|
18. |
Mikhail Kirillin, Aleksandr Khilov, Daria Kurakina, Anna Orlova, Valeriya Perekatova, Veronika Shishkova, Alfia Malygina, Anna Mironycheva, Irena Shlivko, Sergey Gamayunov, Ilya Turchin, Ekaterina Sergeeva, Cancers, 13:22 (2021), 5807 |
→ |
Monitoring of chlorin-based photosensitiser localisation with dual-wavelength fluorescence imaging: numerical simulations A. V. Khilov, D. A. Kurakina, I. V. Turchin, M. Yu. Kirillin Kvantovaya Elektronika, 49:1 (2019), 63–69
|
19. |
A. V. Khilov, D. A. Kurakina, E. A. Sergeeva, M. A. Shakhova, A. S. Malygina, A. M. Mironycheva, K. G. Pavlova, A. A. Getmanskaya, I. V. Turchin, I. L. Shlivko, S. V. Gamayunov, M. Yu. Kirillin, Lothar D. Lilge, Zhiwei Huang, Translational Biophotonics: Diagnostics and Therapeutics, 2021, 58 |
→ |
Monitoring of chlorin-based photosensitiser localisation with dual-wavelength fluorescence imaging: numerical simulations A. V. Khilov, D. A. Kurakina, I. V. Turchin, M. Yu. Kirillin Kvantovaya Elektronika, 49:1 (2019), 63–69
|
|
20. |
Lyubov V. Kolobashkina, Mikhail V. Alyushin, Kirill S. Nikishov, Advances in Intelligent Systems and Computing, 1310, Brain-Inspired Cognitive Architectures for Artificial Intelligence: BICA*AI 2020, 2021, 165 |
→ |
New approach to terahertz diagnostics of human psychoemotional state E. E. Berlovskaya, O. P. Cherkasova, I. A. Ozheredov, T. V. Adamovich, E. S. Isaychev, S. A. Isaychev, A. M. Makurenkov, A. N. Varaksin, S. B. Gatilov, N. I. Kurenkov, A. M. Chernorizov, A. P. Shkurinov Kvantovaya Elektronika, 49:1 (2019), 70–77
|
|
|
Total publications: |
16700 |
Scientific articles: |
16141 |
Authors: |
15098 |
Citations: |
70004 |
Cited articles: |
10603 |
|
Impact Factor Web of Science |
|
for 2022:
0.900 |
|
for 2021:
1.194 |
|
for 2020:
1.022 |
|
for 2019:
1.184 |
|
for 2018:
1.404 |
|
for 2017:
1.151 |
|
for 2016:
1.119 |
|
for 2015:
0.978 |
|
for 2014:
0.897 |
|
for 2013:
0.886 |
|
for 2012:
0.823 |
|
for 2011:
0.832 |
|
for 2010:
0.805 |
|
for 2009:
0.791 |
|
for 2008:
0.835 |
|
for 2007:
0.985 |
|
for 2006:
0.860 |
|
for 2005:
0.722 |
|
for 2004:
0.811 |
|
for 2003:
0.784 |
|
for 2002:
1.000 |
|
for 2001:
0.789 |
|
Scopus Metrics |
|
2023 |
CiteScore |
3.000 |
|
2023 |
SNIP |
0.924 |
|
2023 |
SJR |
0.241 |
|
2022 |
SJR |
0.300 |
|
2021 |
SJR |
0.395 |
|
2020 |
SJR |
0.418 |
|
2019 |
SJR |
0.526 |
|
2018 |
CiteScore |
1.270 |
|
2018 |
SJR |
0.453 |
|
2017 |
CiteScore |
1.120 |
|
2017 |
SNIP |
0.967 |
|
2017 |
SJR |
0.501 |
|
2016 |
CiteScore |
1.130 |
|
2016 |
SNIP |
1.148 |
|
2016 |
SJR |
0.516 |
|
2015 |
CiteScore |
1.070 |
|
2015 |
SNIP |
1.212 |
|
2015 |
IPP |
0.950 |
|
2015 |
SJR |
0.589 |
|
2014 |
CiteScore |
0.890 |
|
2014 |
SNIP |
0.927 |
|
2014 |
IPP |
0.852 |
|
2014 |
SJR |
0.531 |
|
2013 |
SNIP |
1.104 |
|
2013 |
IPP |
0.879 |
|
2013 |
SJR |
0.609 |
|
2012 |
SNIP |
0.818 |
|
2012 |
IPP |
0.665 |
|
2012 |
SJR |
0.399 |
|