|
2-years impact-factor Math-Net.Ru of «Russian Journal of Nonlinear Dynamics» journal, 2021
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
2021 |
0.742 |
97 |
72 |
44 |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
De Angelis F. De Angelis M., “On solutions to a FitzHugh-Rinzel type model”, Ric. Mat., 70:1 (2021), 51–65 |
→ |
Analytical Properties and Solutions of the FitzHugh – Rinzel Model A. I. Zemlyanukhin, A. V. Bochkarev Rus. J. Nonlin. Dyn., 15:1 (2019), 3–12
|
2. |
Z. Wang, P. Zhang, I. Moroz, A. Karthikeyan, “Complex dynamics of a FitzHugh-Rinzel neuron model considering the effect of electromagnetic induction”, Sci. Iran., 28:3, SI (2021), 1685–1697 |
→ |
Analytical Properties and Solutions of the FitzHugh – Rinzel Model A. I. Zemlyanukhin, A. V. Bochkarev Rus. J. Nonlin. Dyn., 15:1 (2019), 3–12
|
3. |
A. Mondal, K. Ch. Mistri, M. A. Aziz-Alaoui, R. K. Upadhyay, “An analytical scheme on complete integrability of 2D biophysical excitable systems”, Physica A, 573 (2021), 125924 |
→ |
Analytical Properties and Solutions of the FitzHugh – Rinzel Model A. I. Zemlyanukhin, A. V. Bochkarev Rus. J. Nonlin. Dyn., 15:1 (2019), 3–12
|
|
4. |
De Angelis F., De Angelis M., “On solutions to a FitzHugh-Rinzel type model”, Ric. Mat., 70:1 (2021), 51–65 |
→ |
On Integrability of the FitzHugh – Rinzel Model N. A. Kudryashov Rus. J. Nonlin. Dyn., 15:1 (2019), 13–19
|
|
5. |
E. Artemova, A. Kilin, “Nonlinear stability of regular vortex polygons in a Bose-Einstein condensate”, Phys. Fluids, 33:12 (2021), 127105 |
→ |
Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate P. E. Ryabov, S. V. Sokolov Rus. J. Nonlin. Dyn., 15:1 (2019), 59–66
|
6. |
S. M. Ramodanov, S. V. Sokolov, “Dynamics of a Circular Cylinder and Two Point Vortices in a Perfect Fluid”, Regul. Chaotic Dyn., 26:6 (2021), 675–691 |
→ |
Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate P. E. Ryabov, S. V. Sokolov Rus. J. Nonlin. Dyn., 15:1 (2019), 59–66
|
7. |
L. G. Kurakin, I. V. Ostrovskaya, “Resonances in the Stability Problem of a Point Vortex Quadrupole on a Plane”, Regul. Chaotic Dyn., 26:5, SI (2021), 526–542 |
→ |
Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate P. E. Ryabov, S. V. Sokolov Rus. J. Nonlin. Dyn., 15:1 (2019), 59–66
|
8. |
Elizaveta M. Artemova, Alexander A. Kilin, 2021 International Conference "Nonlinearity, Information and Robotics" (NIR), 2021, 1 |
→ |
Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate P. E. Ryabov, S. V. Sokolov Rus. J. Nonlin. Dyn., 15:1 (2019), 59–66
|
9. |
Gleb P. Palshin, Pavel E. Ryabov, Sergei V. Sokolov, 2021 International Conference "Nonlinearity, Information and Robotics" (NIR), 2021, 1 |
→ |
Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate P. E. Ryabov, S. V. Sokolov Rus. J. Nonlin. Dyn., 15:1 (2019), 59–66
|
|
10. |
M. M. Anikushin, “On the compactness of solutions to certain operator inequalities arising from the Likhtarnikov-Yakubovich frequency theorem”, Vestn. St Petersb. Univ.-Math., 54:4 (2021), 301–310 |
→ |
On the Smith Reduction Theorem for Almost Periodic ODEs Satisfying the Squeezing Property M. M. Anikushin Rus. J. Nonlin. Dyn., 15:1 (2019), 97–108
|
|
11. |
V. P. Kruglov, P. V. Kuptsov, “Theoretical Models of Physical Systems With Rough Chaos”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 29:1 (2021), 35–77 |
→ |
Generation of Robust Hyperbolic Chaos in CNN S. P. Kuznetsov Rus. J. Nonlin. Dyn., 15:2 (2019), 109–124
|
|
12. |
F. Hassan, V. Kanakaraju, K. Rathinam, G. Norkey, “Numerical analysis of surface integrity in parallel turning PART B: Influence of cutting tool chamfer angle and chamfer width”, Mater. Today-Proc., 44:1 (2021), 266–270 |
→ |
Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process A. M. Gouskov, M. A. Guskov, D. D. Tung, G. Y. Panovko Rus. J. Nonlin. Dyn., 15:2 (2019), 145–158
|
13. |
V. Kanakaraju, F. Hassan, K. Rathinam, “Numerical analysis of surface integrity in parallel turning Part A: Influence of cutting tool nose radius”, Mater. Today-Proc., 38:1 (2021), 186–190 |
→ |
Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process A. M. Gouskov, M. A. Guskov, D. D. Tung, G. Y. Panovko Rus. J. Nonlin. Dyn., 15:2 (2019), 145–158
|
|
14. |
A. D. Morozov, K. E. Morozov, “Synchronization of quasiperiodic oscillations in nearly Hamiltonian systems: the degenerate case”, Chaos, 31:8 (2021), 083109 |
→ |
Global Dynamics of Systems Close to Hamiltonian Ones Under Nonconservative Quasi-periodic Perturbation A. D. Morozov, K. E. Morozov Rus. J. Nonlin. Dyn., 15:2 (2019), 187–198
|
15. |
O. S. Kostromina, “On two-frequency quasi-periodic perturbations of systems close to two-dimensional Hamiltonian ones with a double limit cycle”, Vestn. Udmurt. Univ.-Mat. Mekh. Kompyuternye Nauk., 31:1 (2021), 35–49 |
→ |
Global Dynamics of Systems Close to Hamiltonian Ones Under Nonconservative Quasi-periodic Perturbation A. D. Morozov, K. E. Morozov Rus. J. Nonlin. Dyn., 15:2 (2019), 187–198
|
16. |
O. S. Kostromina, “O rezonansakh pri kvaziperiodicheskikh vozmuscheniyakh sistem s dvoinym predelnym tsiklom, blizkikh k dvumernym nelineinym gamiltonovym”, Zhurnal SVMO, 23:1 (2021), 11–27 |
→ |
Global Dynamics of Systems Close to Hamiltonian Ones Under Nonconservative Quasi-periodic Perturbation A. D. Morozov, K. E. Morozov Rus. J. Nonlin. Dyn., 15:2 (2019), 187–198
|
|
17. |
E. Nozdrinova, O. Pochinka, “Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere”, Discret. Contin. Dyn. Syst., 41:3 (2021), 1101–1131 |
→ |
On a Class of Isotopic Connectivity of Gradient-like Maps of the 2-sphere with Saddles of Negative Orientation Type T. V. Medvedev, E. V. Nozdrinova, O. V. Pochinka, E. V. Shadrina Rus. J. Nonlin. Dyn., 15:2 (2019), 199–211
|
|
18. |
S. Misyurin, G. Kreynin, A. Nelyubin, N. Nosova, “Multicriteria optimization of a dynamic system by methods of the theories of similarity and criteria importance”, Mathematics, 9:22 (2021), 2854 |
→ |
Similarity and Analogousness in Dynamical Systems and Their Characteristic Features S. Yu. Misyurin, G. V. Kreinin, N. Yu. Nosova Rus. J. Nonlin. Dyn., 15:3 (2019), 213–220
|
|
19. |
A. A. Safronov, A. A. Koroteev, N. I. Filatov, N. V. Bondareva, “Fast waves development initiated by oscillations of a recoiling liquid filament in a viscous fluid jet”, Thermophys. Aeromechanics, 28:2 (2021), 237–245 |
→ |
Capillary Hydraulic Jump in a Viscous Jet A. A. Safronov, A. A. Koroteev, N. I. Filatov, N. A. Safronova Rus. J. Nonlin. Dyn., 15:3 (2019), 221–231
|
|
20. |
L. I. Mogilevich, Yu. A. Blinkov, S. V. Ivanov, “Strain waves in nonlinear coaxial shells filled with a viscous incompressible fluid”, Acoust. Phys., 67:5 (2021), 443–450 |
→ |
The Study of Wave Propagation in a Shell with Soft Nonlinearity and with a Viscous Liquid Inside L. I. Mogilevich, S. V. Ivanov Rus. J. Nonlin. Dyn., 15:3 (2019), 233–250
|
|
|
Total publications: |
895 |
Scientific articles: |
778 |
Authors: |
818 |
Citations: |
2432 |
Cited articles: |
491 |
|
Scopus Metrics |
|
2023 |
CiteScore |
1.200 |
|
2023 |
SNIP |
0.472 |
|
2023 |
SJR |
0.260 |
|
2022 |
SJR |
0.259 |
|
2021 |
SJR |
0.339 |
|
2020 |
SJR |
0.323 |
|
2019 |
SJR |
0.215 |
|
2018 |
CiteScore |
0.640 |
|
2018 |
SJR |
0.259 |
|
2017 |
CiteScore |
0.410 |
|
2017 |
SNIP |
0.392 |
|
2017 |
SJR |
0.214 |
|