|
2-years impact-factor Math-Net.Ru of «Matematicheskie Trudy» journal, 2021
2-years impact-factor Math-Net.Ru of the journal in 2021 is calculated
as the number of citations in 2021 to the scientific papers published during
2019–2020.
The table below contains the list of citations in 2021 to the papers
published in 2019–2020. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2021 |
0.743 |
35 |
26 |
13 |
3.8% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
D. Igaz, K. Sinka, P. Varga, G. Vrbicanova, E. Aydin, A. Tarnik, “The evaluation of the accuracy of interpolation methods in crafting maps of physical and hydro-physical soil properties”, Water, 13:2 (2021), 212 |
→ |
Shape-preservation conditions for cubic spline interpolation V. V. Bogdanov, Yu. S. Volkov Mat. Tr., 22:1 (2019), 19–67
|
2. |
Vladimir V. Bogdanov, Yuriy S. Volkov, “Near-optimal tension parameters in convexity preserving interpolation by generalized cubic splines”, Numer Algor, 86:2 (2021), 833 |
→ |
Shape-preservation conditions for cubic spline interpolation V. V. Bogdanov, Yu. S. Volkov Mat. Tr., 22:1 (2019), 19–67
|
|
3. |
T. S. Busel, I. D. Suprunenko, “The Block Structure of the Images of Regular Unipotent
Elements from Subsystem Symplectic Subgroups of Rank $2
$ in Irreducible Representations of Symplectic
Groups. III”, Sib. Adv. Math., 31:2 (2021), 112 |
→ |
The block structure of the images of regular unipotent elements from subsystem symplectic subgroups of rank $2$ in irreducible representations of symplectic groups. I T. S. Busel, I. D. Suprunenko Mat. Tr., 22:1 (2019), 68–100
|
|
4. |
A. V. Popov, “Nilpotentnost alternativnykh i iordanovykh algebr”, Sib. matem. zhurn., 62:1 (2021), 185–197 |
→ |
Lie type Jordan algebras A. V. Popov Mat. Tr., 22:1 (2019), 127–177
|
|
5. |
S. G. Pyatkov, “On evolutionary inverse problems for mathematical models of heat and mass transfer”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 14:1 (2021), 5–25 |
→ |
Inverse problems with pointwise overdetermination for some quasilinear parabolic systems S. G. Pyatkov, V. V. Rotko Mat. Tr., 22:1 (2019), 178–204
|
6. |
A. Yu. Chebotarev, “Obratnaya zadacha dlya uravnenii slozhnogo teploobmena c frenelevskimi usloviyami sopryazheniya”, Zh. vychisl. matem. i matem. fiz., 61:2 (2021), 303–311 |
→ |
Inverse problems with pointwise overdetermination for some quasilinear parabolic systems S. G. Pyatkov, V. V. Rotko Mat. Tr., 22:1 (2019), 178–204
|
7. |
E Tabarintseva, “An inverse problem for a system of nonlinear parabolic equations”, J. Phys.: Conf. Ser., 2099:1 (2021), 012047 |
→ |
Inverse problems with pointwise overdetermination for some quasilinear parabolic systems S. G. Pyatkov, V. V. Rotko Mat. Tr., 22:1 (2019), 178–204
|
|
8. |
A. F. Voronin, “Neodnorodnaya vektornaya kraevaya zadacha Rimana i uravnenie v svertkakh na konechnom intervale”, Izv. vuzov. Matem., 2021, № 3, 15–28 |
→ |
On $\mathbb R$-linear problem and truncated Wiener–Hopf equation A. F. Voronin Mat. Tr., 22:2 (2019), 21–33
|
9. |
A. F. Voronin, “Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener—Hopf equation in the Wiener algebra”, Sib. elektron. matem. izv., 18:2 (2021), 1615–1624 |
→ |
On $\mathbb R$-linear problem and truncated Wiener–Hopf equation A. F. Voronin Mat. Tr., 22:2 (2019), 21–33
|
|
10. |
A. Kazakov, “Solutions to nonlinear evolutionary parabolic equations of the diffusion wave type”, Symmetry-Basel, 13:5 (2021), 871 |
→ |
Construction and investigation of exact solutions with free boundary to a nonlinear heat equation with source A. L. Kazakov Mat. Tr., 22:2 (2019), 54–75
|
11. |
A. L. Kazakov, L. F. Spevak, “Exact and approximate solutions of a problem with a singularity for a convection-diffusion equation”, J. Appl. Mech. Tech. Phys., 62:1 (2021), 18–26 |
→ |
Construction and investigation of exact solutions with free boundary to a nonlinear heat equation with source A. L. Kazakov Mat. Tr., 22:2 (2019), 54–75
|
12. |
A L Kazakov, A A Lempert, L F Spevak, “On an exact solution to the nonlinear heat equation with a source”, J. Phys.: Conf. Ser., 1847:1 (2021), 012006 |
→ |
Construction and investigation of exact solutions with free boundary to a nonlinear heat equation with source A. L. Kazakov Mat. Tr., 22:2 (2019), 54–75
|
|
13. |
G. G. Kazaryan, A. N. Karapetyants, V. N. Margaryan, G. A. Mkrtchyan, A. G. Sergeev, “Novye klassy funktsionalnykh prostranstv i singulyarnye operatory”, Tr. MMO, 82, № 2, MTsNMO, M., 2021, 329–348 |
→ |
Fractional multianisotropic spaces and embedding theorems G. A. Karapetyan Mat. Tr., 22:2 (2019), 76–89
|
|
14. |
G. A. Bakai, “Bolshie ukloneniya dlya obryvayuschegosya obobschennogo protsessa vosstanovleniya”, Teoriya veroyatn. i ee primen., 66:2 (2021), 261–283 |
→ |
Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition A. A. Mogul'skiĭ, E. I. Prokopenko Mat. Tr., 22:2 (2019), 106–133
|
15. |
T. Konstantopulos, A. V. Logachev, A. A. Mogulskii, S. G. Foss, “Predelnye teoremy dlya maksimalnogo vesa puti v napravlennom grafe na tselochislennoi pryamoi so sluchainymi vesami reber”, Probl. peredachi inform., 57:2 (2021), 71–89 |
→ |
Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition A. A. Mogul'skiĭ, E. I. Prokopenko Mat. Tr., 22:2 (2019), 106–133
|
16. |
A. Logachov, A. Mogulskii, E. Prokopenko, A. Yambartsev, “Local theorems for (multidimensional) additive functionals of semi-Markov chains”, Stoch. Process. Their Appl., 137 (2021), 149–166 |
→ |
Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition A. A. Mogul'skiĭ, E. I. Prokopenko Mat. Tr., 22:2 (2019), 106–133
|
17. |
A. A. Mogul’skiĭ, E. I. Prokopenko, “The Large Deviation Principle for Finite-Dimensional Distributions of Multidimensional Renewal Processes”, Sib. Adv. Math., 31:3 (2021), 188 |
→ |
Local theorems for arithmetic multidimensional compound renewal processes under Cramér's condition A. A. Mogul'skiĭ, E. I. Prokopenko Mat. Tr., 22:2 (2019), 106–133
|
|
18. |
N. V. Pertsev, “Primenenie differentsialnykh uravnenii s peremennym zapazdyvaniem v kompartmentnykh modelyakh zhivykh sistem”, Sib. zhurn. industr. matem., 24:3 (2021), 55–73 |
→ |
Stability of linear delay differential equations arising in models of living systems N. V. Pertsev Mat. Tr., 22:2 (2019), 157–174
|
19. |
S. Sabermahani, Ya. Ordokhani, “General Lagrange-hybrid functions and numerical solution of differential equations containing piecewise constant delays with bibliometric analysis”, Appl. Math. Comput., 395 (2021), 125847 |
→ |
Stability of linear delay differential equations arising in models of living systems N. V. Pertsev Mat. Tr., 22:2 (2019), 157–174
|
20. |
N. V. Pertsev, “Application of Differential Equations with Variable Delay in the Compartmental Models of Living Systems”, J. Appl. Ind. Math., 15:3 (2021), 466 |
→ |
Stability of linear delay differential equations arising in models of living systems N. V. Pertsev Mat. Tr., 22:2 (2019), 157–174
|
|
|
Total publications: |
694 |
Scientific articles: |
685 |
Authors: |
478 |
Citations: |
1862 |
Cited articles: |
347 |
|
Scopus Metrics |
|
2023 |
CiteScore |
0.700 |
|
2023 |
SNIP |
0.374 |
|
2023 |
SJR |
0.237 |
|
2022 |
SJR |
0.186 |
|
2021 |
SJR |
0.482 |
|
2020 |
SJR |
0.414 |
|
2019 |
SJR |
0.225 |
|
2018 |
CiteScore |
0.240 |
|
2018 |
SJR |
0.190 |
|
2017 |
CiteScore |
0.230 |
|
2017 |
SNIP |
0.465 |
|
2017 |
SJR |
0.178 |
|
2016 |
CiteScore |
0.350 |
|