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POINTED SPHERICAL TILINGS AND
HYPERBOLIC VIRTUAL POLYTOPES

ABSTRACT. The paper presents an introduction to the theory of hyper-
bolic virtual polytopes from the combinatorial rigidity viewpoint. Namely,
we give a shortcut for a reader acquainted with the notions of Laman
graph, 3D lifting, and pointed tiling. From this viewpoint, a hyperbolic
virtual polytope is a stressed pointed graph embedded in the sphere S2.
The advantage of such a presentation is that it gives an alternative and
most convincing proof of existence of hyperbolic virtual polytopes.

1. INTRODUCTION

In this paper, we give an alternative presentation of the theory of hy-
perbolic virtual polytopes.

The reader should not confuse them with polytopes lying in a hyper-
bolic space. In the context of the paper, the term “hyperbolic” means
“saddle.” In some sense, hyperbolic polytopes are opposite to convex poly-
topes by their convexity property.

This theory arose originally as a tool for constructing counterexamples
to the following uniqueness conjecture, whish was proved by A. D. Alek-
sandrov [1] for analytic surfaces. (See [4, 11, 12, 20]; see also the very first
counterexample constructed without hyperbolic polytopes [9].)

Uniqueness conjecture for smooth convex surfaces. Let K C R3
be a smooth closed convex surface. If for a constant C, at every point of
0K, we have Ry < C < Ry, then K is a ball. (Ry and R» stand for the
principal curvature radii of 0K .)

We refer the reader to [11] for a discussion of the relationship between
the conjecture and the theory of hyperbolic polytopes.

By a convex polytope we mean the convex hull of a finite set of points.
Denote by P the set of all convex polytopes in R3. Equipped with the
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Minkowski addition ®, the set P is a commutative semigroup with the unit
element {O}. The set of all formal Minkowski differences P* = {K@ L™ |
K,L € P} is a group which is called the group of virtual polytopes.

Similarly to rational fractions, we identify K @ L~! and K’ @ (L')~!
whereas K @ L' = K' ® L.

The elements of P*, which are called wvirtual polytopes, are not mere
formal expressions. They can be interpreted geometrically, and multiple
geometric interpretations are crucial for their study.

The first geometric interpretation appeared in paper [6]. From its view-
point, a virtual polytope is a piecewise constant function with certain
specific properties (a convex chain).

Alternatively, in the framework of the present paper, a virtual polytope
is a stressed spherically embedded graph. We turn the set of all stressed
graphs into a group (see Sec. 3), which is shown (Theorem 3.7) to be
canonically isomorphic to the group of virtual polytopes.

Further, among the virtual polytopes we single out the class of hyper-
bolic virtual polytopes (for short, hyperbolic polytopes).

Very roughly, hyperbolic polytopes are defined to be as nonconvex as
possible. By definition, the graph of the support function of a hyperbolic
polytope is a saddle surface (in contrast to convex polytopes, for which
the graph of the support function is a convex surface).

The crucial link to the pointed tilings is the following: if a spherically
embedded stressed graph is pointed, then the corresponding virtual poly-
tope is hyperbolic (Lemma 4.3).

The theory of hyperbolic polytopes has the following curious feature:
the most nontrivial and important fact is the existence and diversity of
hyperbolic polytopes (see [20] for some 3D images). In other words, it took
a lot of efforts to construct different examples of hyperbolic polytopes.

The advantage of the approach of the paper is that it gives an alterna-
tive and the most convincing proof of existence of hyperbolic polytopes.

The paper first pulls the theory of planar pointed tilings to the sphere
S2. Necessary facts of graphs rigidity are transferred onto the sphere due
to some simple adjustments of Sec. 2 and the papers [2] and [18]. The
only difference between the spherical case and the planar case (which,
however, changes the situation very much) is the existence of pseudo-
digons. Namely, each planar polygon has at least three convex angles,
whereas on the sphere there exist polygons with just two convex angles
(see Fig. 4).



POINTED TILINGS AND HYPERBOLIC POLYTOPES 159

This fact changes Laman-type counts for pointed tilings. As a conse-
quence, there exist pointed spherically embedded Laman-plus-one (and
even Laman-plus-k graphs; see Examples 4.5 and 4.6). They possess a
nontrivial saddle 3D lifting. By definition, this is nothing but a hyper-
bolic polytope.

Thus a hard problem of constructing hyperbolic polytopes (which orig-
inally were 3D objects) is reduced to construction of a spherically embed-
ded pointed graph.

This technique has already led to a new result. Namely, the author
obtained a refinement of A. D. Aleksandrov theorem on 3D polytopes
with mutually noninsertable faces (see [14]).

2. GRAPHS ON THE SPHERE. SPACE OF EQUILIBRIUM STRESSES

A graph is a pair G = (V, E), where V = {1,2,... ,n} is a finite set, E
is a set of unordered pairs (7, j) such that 7,5 € V and i # j. Elements of
V and FE are called vertices and edges, respectively.

A subgraph G’ of G is called proper if G # G'.

By a graph embedded in R* we mean a triple G = (V, E,p), where V'
and E are as above and p is an injective mapping p: V — R3.

The points p(i) are denoted by p; for short; they are called vertices of
the graph. The segments p;p; for (i,j) € E are called edges of the graph
and are assumed to be nonintersecting.

Denote by S? C R? the unit sphere centered at O. Its points we identify
with their radius vectors.

By a spherically embedded graph we mean a quadruple G = (V, E, p,1),
where V and E are as above, p is an injective mapping p : V — S2. The
points p; = p(i) are called vertices of the graph. A little bit more care is
needed here to define edges.

The function [ defined on the set E sends each pair (i,5) € E to
a geodesic segment with endpoints p; and p;. The segments [(7, j) are
denoted for short by I;; and are called edges of the graph. We do not require
that l;; be the shortest geodesic segment (i.e., a minor arc of a great circle)
connecting p; and pj, so there are two possible edges with fixed endpoints
(or even infinitely many possible edges for antipodal endpoints).

We assume that the edges l;; are nonintersecting.

In addition, we assume that in the section all embeddings are
generic [3]. In its general stating this means that the vertex coordinates
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are algebraically independent. In particular, this means that for a spher-
ically embedded graph, there are no antipodal vertices.

Example 2.1. It is convenient to consider any great circle on S? as an
embedded graph (with no vertices and a single closed edge) as well. We
call it the exotic graph EG.

We will use a slightly modified (in comparison with [3]) definition of
an equilibrium stress on a graph G in R? and its natural adjustment for a
spherically embedded graph. However, the following definition is in some
sense equivalent to the classical one.

Definition 2.2. Let G = (V, E,p) be a graph embedded in R3. A map-
ping s : E — R is called an equilibrium stress (or, briefly, a stress) on G
if for each i we have

pib;
Z s(i,j)u;; =0, where w;; = ———. (%)
(i.)CE | pipj |

A stress is called nontrivial if it is not identically zero. A stress is called
nonzero if it is nonzero on each edge. We denote the space of all stresses
on G by S(QG).

Definition 2.3. Let G = (V, E,p,l) be a spherically embedded graph. A
mapping s : E — R is called an equilibrium stress (or briefly, a stress) on
G if for each i we have

(i,j)€eE

where u;; is the unit tangent vector of l;; at the point p;. The directions
are chosen as depicted in Fig. 1.
We denote the space of all stresses on G by S(G).

Fig. 1.
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Definition 2.4. We assume that the exotic graph EG possesses a stress.
It can be any real number assigned to the only edge of EG.

The following construction reduces any stress on a spherically embed-
ded graph G to a stress on a certain graph embedded in R3. The ideas
are borrowed from [2] and [18].

Given a graph G embedded in S2, we add the point p,.; = O as a new
vertex. We next replace the edges of G' by corresponding line segments.
Finally, we add the edges (i,n + 1) for i = 1,...,n as new edges and
denote the embedded graph obtained by G = (V, E, p).

Proposition 2.5. The spaces of stresses S(G) and S(G) are canonically
isomorphic.

Proof. Let s be a stress on G. Define the stress 5 on G as follows. For
i,j <mn+1,let a;; be the angle between p;p; and u;; (see Fig. 1). We
put
o s(i,j)/ cosay; if |l ;| <,
s(ij) = . )
—s(i,7)/ cosa;; otherwise.
We also put

n
s(i,n+1)=— Zs(i,j)tanaij.
j=1

We show that this mapping is an isomorphism between S(G) and S(G).
First, we check that 3 is a stress on G. The condition () at the vertex p;
for ¢ < n is valid by construction.

Furthermore, the sum of all vectors 5(i, j)u;; vanishes. Therefore, the
condition (x) is also valid at the vertex p,11 = O. To complete the proof,

observe that the mapping S(G) — S(G) described above is invertible.
That is, given a stress 5 on (G, the stress s can be restored. O

Definition 2.6 [3]. A graph G = (V, E) with n vertices and m edges is
a Laman graph if
e m =2n—3 and
e cach subset V' C V consisting of k vertices spans at most 2k — 3
edges. (We say that an edge (i,j) € E is spanned by V' ifi,j € V'.)

Definition 2.7 [7]. Adding to a Laman graph an extra edge, we obtain
a Laman-plus-one graph. Similarly, a Laman graph with k extra edges is
called a Laman-plus-k graph.
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Definition 2.8 [7]. A graph G is a rigidity circuit if removing any of its
edges, we obtain a Laman graph. Equivalently, G is a rigidity circuit if it
is a Laman-plus-one graph and has no Laman-plus-one proper subgraphs.

The following proposition is a spherical version of some classical facts.

Proposition 2.9. Let G be a generic spherically embedded graph.
(1) If G is a Laman graph, then G is infinitesimally rigid.

(2) If G is a Laman-plus-one graph, then G possesses a nontrivial (i.e.,
not identically zero) stress.

(3) If G is a rigidity circuit, then G possesses a nonzero stress.

Proof. (1) The rigidity of generic Laman graphs is valid for graphs em-
bedded in the plane (see [3]). It is proved in [8] that it is also valid for
spherically embedded graphs. More precisely, it is proved that infinitesimal
motions of a spherically embedded graph are in a one-to-one correspon-
dence with the infinitesimal motions of its projection on the plane.

The paper [18] treats only those spherical embeddings that fit on an
open hemisphere. Still the general case is easily reduced to the hemispher-
ical one via the following trick.

Fix a hemisphere S*. For a spherically embedded graph G =
(V, E,p,l), we construct a new graph G+ = (V, E,p*,1") where p; € S,
and p;L is p; or —p; depending on which of the two points p; and —p;
belongs to ST. Finally, /;; is defined as the segment between pi+ and pj
that also lies in S™T.

This mapping preserves rigidity, but does not maintain the noninter-
secting property.

(2) We denote by n the number of vertices of G and by m the number
of its edges. It is proved in [18] that G is infinitesimally rigid. Together
with Corollary 2.3.1 from [3] applied to the graph G, this directly implies
that

6=3(n+1) — (m+n)+dim(S(QG)).

Therefore, dim(S(G)) = 1.

(3) Assume the contrary, i.e., that G has a nontrivial stress that van-
ishes on some of the edges. Removing all zero-stressed edges, we obtain a
proper subgraph of G with a nonzero stress. It is at least a Laman-plus-one
graph. A contradiction. O
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3. 3D LIFTINGS FOR GRAPHS ON THE SPHERE

A (spherical) polygon on the sphere S? C R? is a domain of S? bounded
by a simple closed polygonal line (its edges are assumed to be geodesic
arcs).

A spherical polygon A spans a cone C'(A4) in R? with apex O. Namely,
we put

CA)={dzcR3*|Nc R, zc A}

A spherically embedded graph G generates a tiling S7 (G) of S%. Each
tile gives a cone, and thus ST (G) yields a tiling of R? into the union of
cones:

CT(G) = {C(A) | A € ST(G)}.

Definition 3.1. A function h : R® — R is called a 3D lifting of a spheri-
cally embedded graph G if it possesses the following four properties:

(1) h is continuous,

(2) h(0) =0,

(3) h is piecewise linear, and

(4) h is linear on each cone of the tiling CT (G).

A 3D lifting is nontrivial if it is not (globally) linear. A 3D lifting is
tight if it is not a 3D lifting of some proper subgraph of G. That is, a tight
lifting is not linear in the vicinity of inner points of the edges of G.

Given a graph G, the set of all its 3D liftings is a linear space.

An important example. We show that a convex polytop canonically
determines a positively stressed spherically embedded graph.

Let K C R? be a convex polytope. We recall that its support function
hi : R® — R is defined by

h =
K(X) glea[}(((xa Y)a

where (x,y) stands for the scalar product. The support function is known
to satisfy the four properties from Definition 3.1 with respect to a certain
conical tiling of R? (the outer normal fan of K). Intersecting the conical
tiling with S2, we obtain a tiling ¥z of S2, which is called the spherical
fan of K. The 1-skeleton of Yk is a spherically embedded graph G .
The polytope K and its fan ¥ i are combinatorially dual. In particular,
the edges of Gk are in one-to-one correspondence with the edges of K.
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Proposition 3.2. Let K C R? be a convex polytope. In the above nota-
tion, we have:

(1) The support function hy is a tight 3D lifting of the graph G.

(2) For each plane e C R?, the restriction hi|. of the support function
hi to e is a convex function. Equivalently, the graph of hg|. is
concave up.

(3) The function sk that sends each edge of Gk to the length of the
corresponding edge of K is a positive stress on G .

(4) Vice versa, if G is a spherically embedded graph with a positive stress
s, then there exists a unique (up to a translation) convex polytope
K C R? such that G = Gk and s = sg.

Proof. The proposition is a mere reformulation of classical facts on con-
vex polytopes; we refer the reader to [19] and [2] for advanced details.
Assertion (1) reformulates the definitions of the outer normal fan and
support function. Assertion (2) means just the convexity of h-.
Assertion (3) is obvious. Indeed, let p; be a vertex of Gk . By duality,
it corresponds to a face F' of K such that the outer normal of F' equals p;.
The edges of F' correspond by duality (and are orthogonal) to the edges of
Gk incident to the vertex p; (see Fig. 2). The condition of Definition 2.3
means that the sum of edge vectors of F' vanishes, which is obviously true.
Let us prove assertion (4). By the above reason, a positively stressed
graph G yields a collection of convex polygons (for each vertex p;, we have
a polygon) which can be patched together to form a convex polytope (see
Fig. 2). O

Fig. 2.
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Example 3.3. In the framework of Proposition 3.2 (4), a positively
stressed exotic graph EG generates a line segment. Its length equals the
value of the stress.

Denote by SG the set of all pairs (G, s), where G is a spherically em-
bedded graph and s is a nonzero stress on G.

To avoid degenerate cases, we require that each vertex of G be at least
trivalent.

Exotic graphs and the empty graph are also admitted. The following
definition turns SG into a group, which is called the group of stressed
graphs.

Definition 3.4. The sum (G;s) = (Gi1;s1) + (G2;s2) of two stressed
graphs is defined via the following procedure:

e Taken together, the tilings ST (G1) and ST (G2) generate their com-
mon refinement, which is a new tiling of S?. There appear new ver-
tices, and some of the edges get split. The 1-skeleton of the refine-
ment can be regarded as a spherically embedded graph G.

e (7 has a natural stress defined as the sum of s; and s». More precisely,
let | be an edge of G. If ] lies on an edge of G; and on no edge of
G, then we assign to | the stress inherited from s;. If | lies on an
edge of G; and on an edge of G2, we take the sum of the inherited
stresses. However, the stress is not necessarily nonzero, so we need
some further reductions.

e To make the stress nonzero, we remove all zero stressed edges of
G. On this step, redundant vertices of two types may appear. The
vertices of the first type are those possessing just two adjacent edges.
In this case, the edges form the angle m and are equally stressed.

The redundant vertices of the second type are isolated vertices.

o We remove all redundant vertices.
e The stressed graph obtained is called the sum of the stressed graphs
(Gl; 51) and (Gz, 82).

Remark 3.5. Exotic graphs and the empty graph fit nicely into this
scheme. An exotic graph can be represented as a sum of two nonexotic
ones. This means that without them we would fail to get a group.

Proposition 3.6. Each stressed graph (G;s) € 8G is the difference of
two positively stressed graphs in §G.

Proof. For each edge l;; of (G;s) with negative stress, we add to (G; s) a
positively stressed exotic graph whose edge contains /;;. (The stress should
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be greater or equal than —s(l;;).) This makes the sum positively stressed.
O

Summarizing the above, we get the following theorem.
Theorem 3.7. (1) The group SG of stressed graphs is generated by
{(Gk;sk)}, where K ranges over the set of convex polytopes in R3.
(2) The group SG is canonically isomorphic to the group P of virtual
polytopes (see Sec. 1).
(3) Therefore, we arrive at the same group of virtual polytopes as that
defined by Pukhlikov and Khovanskii [6].

Definition 3.8. Keeping in mind the canonical isomorphism from The-
orem 3.7, we will call an element of the group of stressed graphs a virtual
polytope represented by a stressed graph.

Theorem 3.9. (1) For any spherically embedded graph G, the space of
stresses of G is canonically isomorphic to the space of 3D liftings of G.
(2) For any k =1,2,..., a generic spherically embedded Laman-plus-k
graph has a nontrivial 3D lifting.
(3) A spherically embedded rigidity circuit has a tight 3D lifting.
Proof. If G is generated by a convex polytope, then assertion (1) follows
from Propositions 3.2 and 3.6. The general statement follows by linearity

and Proposition 3.6. Assertions (2) and (3) follow from Theorem 3.7 and
Proposition 2.9. O

Theorem 3.9 motivates the following definition.

Definition 3.10. In the framework of assertion (1) of Theorem 3.9, the
3D lifting h = h(G}; s) of G corresponding to a stress s is called the support
function of (G s).

This definition is consistent with the definition of the support function
of a convex polytope K; that is, hx = h(Gk, sk).

4. POINTED GRAPHS AND HYPERBOLIC VIRTUAL POLYTOPES

Now we are ready to single out the class of hyperbolic virtual polytopes.

Definition 4.1. A surface F C R? is called a saddle surface if there is
no plane cutting a bounded connected part off F'.

Equivalently, F is a saddle surface if no plane intersects F' locally at
just one point.
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Definition 4.2. A function h : R> — R is hyperbolic if the graph of the
restriction h’e to any plane e is a saddle surface.

A virtual polytope represented by a stressed graph (G; s) is called hy-
perbolic if the corresponding 3D lifting h(G, s) of G is hyperbolic.

A spherically embedded graph is called pointed if each of its vertices is
incident to an angle larger than & (see Fig. 3).

Fig. 3.

Hyperbolic polytopes and pointed graphs are closely related due to the
following simple fact.

Lemma 4.3 [11]. Let (G;s) € §G. If G is pointed, then (G;s) is hyper-
bolic.

We borrow the following definitions and proposition (including the idea
of the proof) from the theory of planar pointed pseudo-triangulations
(see [16, 17]).

A spherical polygon is called a pseudo-triangle (respectively, pseudo-

digon) if it has exactly three (respectively, exactly two) angles smaller
than 7.

7

Fig. 4. A pseudo-digon.
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Proposition 4.4. Let G be a spherically embedded graph with n vertices
and m edges. Suppose that each tile of T (G) is either a pseudo-triangle or
a pseudo-digon. Then m = 2n — 6 + d, where d is the number of pseudo-
digons in the tiling T(G).

Proof. Denote by ¢ the total number of convex angles (i.e., the angles
smaller than 7) of all tiles from 7 (G). Denote by ¢ the number of pseudo-
triangles. Combining

n—m+d+t=2 (Euler’s formula),
¢ = 2d + 3t (first count of convex angles), and
¢ = 2m — n (second count of convex angles),

we obtain the required relation. O

Since we aim at hyperbolic polytopes, we are interested in stressed
pointed embedded graphs.

Recall that a planar pointed graph never has a nonzero stress (see [17]).
We sketch here the proof which appeals to the theory of saddle surface.

If a pointed graph has an equilibrium stress, then it has a 3D lifting.
Hence its graph is a piecewise linear surface, which is a saddle surface (due
to the pointed property) and which coincides with the plane everywhere
except for a bounded set. The latter is impossible.

The crucial property of pointed spherically embedded graphs is that
some of them (actually, many of them) have nontrivial 3D liftings. This
means that there exist many hyperbolic virtual polytopes.

Example 4.5. Figure 6 presents a spherically embedded rigidity circuit.
It has 24 vertices and 46 edges. The graph generates a tiling with four
pseudo-digons (marked grey). Due to Proposition 2.9, it has a tight 3D
lifting.

Fig. 5. A pointed rigidity circuit. The figure depicts one side of
the sphere, the other side looks similarly.
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In the framework of the above theory, it becomes quite easy to construct
a pointed rigidity circuit G. Indeed, we know in advance that the tiling
7T (@) should contain four pseudo-digons. So one has to place on the sphere
four disjoint pseudo-digons and after that complete the drawing by a
pointed pseudo-triangulation of their complement. This is not tricky at
all. It should be mentioned how much efforts were involved to construct
the first examples of hyperbolic polytopes (see [11, 12, 9]).

Fig. 6. A pointed Laman-plus-5 graph.

Example 4.6. Figure 6 presents a procedure which leads to a pointed
embedded Laman-plus-k graph (on the left). Its space of stresses is k-
dimensional.

Example 4.7. Figure 7 presents another spherically embedded rigidity
circuit.

.-:F -
# .-
| P
\ o |
- _\_"'-:-_.._ ___--- ..', 5 Y

Fig. 7. Another pointed rigidity circuit.

Asin Example 4.5, the graph generates a tiling with four pseudo-digons,
but this time they lie differently in the following sense.

We easily to see that each pseudo-digon contains a great semicircle.
Given a pointed embedding of a rigidity circuit G, fix a great semicircle
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]
Fig. 8. Two nonisotopic configurations of great circles.

for each of the pseudo-digons of 7 (G). This yields a configuration of four
disjoint great semicircles on S2.

Examples 4.5 and 4.7 give configurations from Fig. 8 (the first and the
second one, respectively). The configurations are known to be nonisotopic
(see [14]), i.e., there is no continuous motion which brings one of them to
another avoiding crossings.

These different examples have yielded examples of nonisotopic hyper-
bolic hérissons (discussed in [13] and [5]). We recall that the existence of
just one such surface was an open problem for a long time. The existence
of the second isotopy type was a new surprise. Using the techniques of the
present, paper, we construct it easily.

Acknowledgment The author is grateful to the Bielefeld University, SFB
701, where the present study was completed.
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