Math-Net. Ru

E. V. Bychkov, A. V. Bogomolov, K. Yu. Kotlovanov, Croxactuueckast MaTeMaTu-
yecKasi MoJiesIb BHyTpeHHux BosH, Becmu. IOVpI'Y. Cep. Mamem. modeauposarue
u npoepammuposanue, 2020, Tom 13, BbiIyckK 2, 33-42

DOI: 10.14529/mmp200203

UcnonbzoBanne Obmepoccuiickoro maremarndeckoro mopraiaa Math-Net.Ru mogpasymesaer, 910 BbI IpOIUTAIN U
COTJIACHBI C TIOJIB30BATEILCKUM COTJIAIIIEHUEM
http://www.mathnet.ru/rus/agreement

[lapaMeTpsl 3arpy3KHU:
IP: 3.147.72.244
31 okTabpa 2024 r., 21:09:32




MSC 35C15, 60H30, 76B15 DOI: 10.14529/mmp200203
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The paper studies a mathematical model of internal gravitational waves with additive
“white noise”, which models the fluctuations and random heterogeneity of the medium.
The mathematical model is based on the Sobolev stochastic equation, Dirichlet boundary
conditions and the initial Cauchy condition. The Sobolev equation is obtained from the
assumption of the propagation of waves in a uniform incompressible rotation with a constant
angular velocity of the fluid. The solution to this problem is called the inertial (gyroscopic)
wave, since it arises due to the Archimedes’s law and under the influence of inertia forces.
By “white noise” we mean the Nelson—Gliklikh derivative of the Wiener process. The study
was conducted in the framework of the theory of relatively bounded operators, the theory
of stochastic equations of Sobolev type and the theory of (semi) groups of operators. It
is shown that the relative spectrum of the operator is bounded, and the solution of the
Cauchy—Dirichlet problem for the Sobolev stochastic equation is constructed in the operator
form.

Keywords: relatively bounded operator; Sobolev equation; propagators; “white noise”;
Nelson—Gliklikh derivative.

Introduction

The internal waves arise at the interface of two fluids with different densities. In internal
waves the maximum vertical displacement of particles takes place not on the surface of
the fluid, but inside it. For example, this fact can be observed in the ocean at the location
of desalinated water over heavier water with greater salinity. In this place a part of power
of the ship engine is consumed on excitation of internal waves, resulting in a decrease of
sheep’s speed. In the simplest case the two-layer fluid model of internal waves is quite
similar to the surface waves. They also concentrate near the interface. Assuming that the
fluid fills entirely each half space on both sides of the border, the dispersion relation for
internal waves is identical to the dispersion relation w? = gk, where ¢ is the acceleration
due to gravity and k is the wavenumber, for gravitational waves but with a different
effective value gravity acceleration [1].

The mathematical model of waves in homogeneous incompressible fluid rotating with
a constant angular velocity €2 is described by the linear system of hydrodynamic equations
(the Sobolev system of equations [2])

Vt+p—1()Vp+2[QXV] =0,

Pt = 07 (]‘)
Vv =0,

where v={u, v, w} is a vector of velocity, p is a pressure is applied perpendicular to the free
surface, pp=const is an equilibrium density, and the buoyancy frequency is equal to zero.
By directing the Oz axis to be collinear to the vector of €2, we can obtain the equation for
the vertical velocity component of the fluid particles (the Sobolev equation [2])

Bectauk FOYpI'Y. Cepua <«Maremarudeckoe MOAeJIMPOBAHUE 33
u nporpammupoBanunes> (BectuukIOVpIl'Y MMII). 2020. T. 13, Ne 2. C. 33—-42



E.V. Bychkov, A.V. Bogomolov, K.Yu. Kotlovanov

Awtt + F2’LUZZ = O, (2)
where F' is the Coriolis parameter. The wave solutions that satisfy (2) are called inertial
(or gyroscopic) waves propagating on the surface of a rotating fluid. A solution to equation
(2) in an unbounded domain was obtained in [2| by the Green function method. The paper
[3] describes the behavior of solutions to two-dimensional Hamiltonian systems arising in
the theory of small oscillations of rotating ideal fluid and constructs a mathematical model
of the incipience of a vortex structure.

In this paper, we study the inhomogeneous stochastic equation

A I%tt +Fw,, :}K (3)

with the initial-boundary conditions
w(x,t) =0, (x,t)€0D xR, (4)
w(z,0) = wo(x), W, (z,0) = w(z), (5)
)

where w, (wy,) is the first (second) Nelson—Gliklikh derivative of a random process w, f (¢

is the “white noise”, which models heterogeneity of fluid and random fluctuations, D C R?
is a domain with a smooth boundary 0D, wy(z) and w;(z) are random K-variables. By
“white noise” we mean the Nelson—Gliklikh derivative of the Wiener process.

The concept of the Nelson—Gliklikh derivative was introduced in the monograph [4];
the first derivative of an arbitrary random process was also found there. Later, derivatives
of higher-order random processes were calculated, and the first mathematical models with
“white noise”, were investigated [5]. The Nelson—Gliklikh derivative is based on the concept
of the average derivative introduced by Nelson [6]. In addition to the approach to “white
noise”, as the Nelson—Gliklikh derivative, the Ito—Stratonovich—Skorokhod approach is
used by Kovac and Larson [7]. Also, in [8], a equation of the parabolic type was considered
in the form of Ito differentials with uniform initial conditions, and a solution to the problem
was found by reducing the equation to a first-order system. [.V. Melnikova takes a similar
approach. The paper [8] introduces the spaces of generalized H-valued random variables,
in which the H-valued white noise turns out to be smooth with respect to the variable t.
It was shown in [9] that the Nelson-Gliklikh derivative of the Wiener process is in good
agreement with the predictions of the Einstein — Smoluchowski theory of Brownian motion;
therefore, the stochastic process was called “white noise”. This approach is successfully
applied to the study of equation of the Sobolev type, mathematical model based on one
[10-15], the dichotomies of the stochastic equation defined on the manifold [16], and to
the study of mathematical models of measuring devices [9].

The paper is organized as follows. In Section 1, we define the space of random K-
variables, the space of random K-“process’, and the space of K-“noises”. In Section 2, we
introduce the basic definitions and concepts of the relatively bounded operators theory and
findings the solution of abstract equation. In Section 3, the mathematical model is reduced
to the Cauchy problem for an abstract operator-differential equation and the propagators
for stochastic Sobolev equation (3) are constructed when D is a parallelepiped.

1. Space of Differentiable K-“noises”

Currently, the theory of Sobolev type equations is transferred to the spaces of K-
“noises” [9-16|. In this section, for completeness, we give only the necessary information
about the spaces of differentiable K-“noises”, which are considered in [9, 16|. Denote by
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Q= (2, A, P) the total probability space. A measurable map £ : Q@ — R is called a random
variable. The set of random variables whose expectations are equal to zero (i.e., E§ = 0)
and the variances are finite (i.e., D¢ < +00) forms the Hilbert space Ly with the inner
product (&1,&) = E&&. Denote by Ag a o-subalgebra of the o-algebra A and construct
the space L9 of random variables measurable with respect to Ag, then L9 is a subspace
of the space Ly. Let € € Ly, then IT : Ly — L is an orthoprojector, and TI¢ is called the
conditional expectation of a random variable £ and denoted by E(&|Ay).

Let I = (0,T), T € R,. Consider two mappings: f : I — La, which associates each
t € I with a random variable £ € Ly, and ¢ : Ly x 2 — R, which associates each pair (£, w)
with a point {(w) € R. The map 1 : I xQ — R of the form n = n(t,w) = g(f(t),w) is called
(one-dimensional) random process. If all the trajectories of a random process are almost
surely (a.s.) continuous, then this process is called continuous. The set of continuous
random processes forms a Banach space, which we denote by CLs. An example of a
continuous random process is the one-dimensional Wiener process 5 = ((t), which can be
represented as

Zﬁk&n( (2k+ 1)t ) (6)

where &, are uncorrelated Gaussian random variables such that E&, = 0, D&, =
[Z(2k+1)] .

Now we fix an arbitrary continuous random process n € CLy and ¢ € I. Let N/ be
the o-algebra generated by the random process 7(t), and E;' = E(-|N;') be the conditional
expectation.

Let n € CLg, then by the average derivative from the right Dn(t,-) (left D.n(t,-)) of
the random process n at the point t € (¢,7) we mean a random variable

At )—n(t,-
Dn(t,-) = A}tg%+ E] <Ti(t++n(t)>

(Pt = iy mr (eomgmasa)),

if the limit exists in the sense of the uniform metric on R. A random process 7 is called
average differentiable from the right (left) on I if there exists an average derivative from
the right (left) at each point ¢t € I. Let n € CLa be a random process, which is average
differentiable from the right and left on I. Then the average symmetric derivative is defined

as 73: Dgn = % (D + D.)n. Further, we refer to the average symmetric derivative as the
Nelson—Gliklikh derivative. By 73(”, [ € N, we denote the [-th Nelson—Glicklikh derivative
of the random process 1. Note that if n(t) is a deterministic function, then the Nelson—

Gliklikh derivative coincides with the classical derivative. In the case of the one-dimensional
Wiener process 3 = ((t), the following statements are true:

(i) B (t) = 2 for all t € Ry;
(i) 5<l():(_1)l "I (2 —1)(‘;%1, leN, [>2.
We construct the noise space C'Ly, | € N, as the space of random processes from

CL,, whose trajectories are almost sure differentiable in the sense of the Nelson-Gliklikh
derivative on I up to the [-th order inclusive.
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Let 4 be a separable Hilbert space with the orthonormal basis {¢,}. Each element
u € 4 can be written as .
k=1

Let K = {1} be a monotonically decreasing numerical sequence such that >_,° | 17 < +00.
Choose a sequence of random variables {£,} C Ly such that > 2 v D¢, < +oc. Then a
Hilbert space UgLsy is called a random K-variable space, moreover & = > 72 | Vp&py.

Choose a sequence {7} from the space CL2 and define the U-valued continuous random
K-process by the formula

§) =D wbi(t)pn (7)

provided that series (7) converges uniformly on any compact set from [ in the norm of
UkL,. We introduce the Nelson-Gliklikh derivatives of the random K-process ¢ (t) =

S vk €0 (t)r provided that the Nelson—Gliklikh derivatives from the right exist up
to the [-th order inclusive, and all the series converge uniformly on any compact set of I
in the norm of UkL,. Therefore, we define the space C'(I; UkLsz) of continuous random
K-—processes whose trajectories are a.s. continuously differentiable with respect to Nelson—
Gliklikh up to the I-th order inclusive. For shortness, the space C'(I; UkLsy) is called the
space (of differentiable) K-‘“noises”.

2. Cauchy Problem for Abstract Stochastic Equation

Let consider two spaces of random K-variable 44 = UgLs, § = FxLs, the operators
L,M,N € L(;F), and L be a Fredholm operator. Consider the Sobolev type equation of
the second order in the space of differentiable K-“noises”

L wy= Mw + Ng (8)

with the initial conditions ° o
w (0) = wo, wy (0) =w;. 9)
Using the following lemma, we can transfer the theory of relatively bounded operators to
the spaces of random K-variables

Lemma 1. Let U F be separable Hilbert spaces and A € L(U;F). Then A €
,C(UKL2; FKL2) .

The sets
pH (M) ={peC:(uL - M) e LFW}

and o(M) = C\ p"(M) are called the L-resolvent set and L-spectrum of the operator M,
respectively.

The operator M is said to be o-bounded with respect to the operator L (or (L,o)-
bounded) if 3a € Ry : V u € C (Jju| > a) = (uL — M)™' € LI F)).

The operator-functions (uL — M)~', RLM) = (uL — M)™'L and
Ly(M) = L(uL — M)~' with the domain p“(M) are called the L-resolvent, the
right L-resolvent and the left L-resolvent of the operator M, respectively. If the set X (M)
is bounded, then the operator M is called (L, o)-bounded.
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If the operator M is (L, o)-bounded, then the operators

p- L RE(M)dp e L&), Q= % /Lﬁ(M)du € L(3)

271
¥ ¥

exist. Here v C C is a closed contour which bounds a domain containing o*(M). Let
U0 (U = ker P (imP), §° (F') = ker @ (im@). Denote by Lj (My) the restriction of the
operator L (M) on the subspaces 4*, k =0, 1.

Theorem 1. (The splitting theorem [10]) Let the operator M be (L, o)-bounded. Then
(i) the operators Ly , My € L(UF F*), k=0, 1;
(i1) there exist the operators My "' € L(F°,U°) and L' € L(F', UY).

Construct the operators H = M; 'Ly € L(4°), S = Ly'M; € L(4U'). The operator M
is called (L, p)-bounded, p € {0} UN, if 0o is a removable singularity of the L-resolvent
of the operator M (i.e. H = Q,p = 0) or a pole of the order p (p € N) (i.e. HP # O,
HP™ = Q) of the L-resolvent of the operator M.

Definition 1. A random K-process w € C?(I; UkLy) is called a solution to equation (8),
if a.s. all its trajectories satisfy equation (8) for allt € I. A solution w = w(t) of equation
(8) is called a solution to problem (8), (9), if moreover condition (9) is fulfilled.

Note that, generally speaking, problem (8), (9) is unsolvable for arbitrary wy, w; € 4.
Construct the set oX(M) = {u € C : u™ € o¥(M)}. This set is compact in C since the
L-spectrum ol (M) of the operator M is compact. Consider a closed contour I' = {|u| =
R : R"™ > a} and construct the operator-functions

1

" 2mi

Vi p N (L — M) Letdy,

r
where m = 0, 1, and the integral is understood in the Riemann sense.

Definition 2. The map V* € C®(R;L(Y)) is called a propagator of homogeneous
equation (8), if the vector-function w(t) = V*'v is a solution to (8) for all v € §L.

Theorem 2. [13] Let the operator M be (L,p)-bounded. Then the operator-functions
Vi, k= 0,1 are propagators of homogeneous equation (8).

Theorem 3. [13] Let the operator M be (L,p)-bounded. Then for any N € L(,F) and
a random process w such that (I— Q)Ng € CPT?(R, FgLs) and QNg € C(R, FkxLs), and
for arbitrary independent random variables wgy, w; € Uklsa, which are independent of g
for all fizred t € [0, 7], there exists a unique solution w to problem (8), (9) given by

t

1 p
Z Viiwy, + /Vf_sLl_lQNg(s)ds - Z HIM; NI — Q)N g9 (t). 10
k=

0 0 q=0

w(t)

3. Propagators of the Sobolev Stochastic Equation
We consider a case when the domain D is a parallelepiped. There are domains with
2

0
an analytic boundary for which the operator A_IW where it has continuous spectrum.
z
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Consider a space over the domain D such that the operator A~! is a compact operator

and the operator 822 is bounded, and therefore their composition is a compact operator.
2

Therefore, the spectrum of A_l% is bounded. Later we will show that the L-spectrum
2
of the operator M coincides with the spectrum of the operator Al%. Let the domain
D be the parallelepiped [0, a] x [0,b] x [0,¢]. Fix p € N and define the spaces & = {u €
WEP(D) : u(z,y,z,t) =0 (2,y,2,t) € 002 x Ry} and § = WE(D). The space §l is a
separable Hilbert space by construction. Denote by =X}, = — (%)2 - (%)2 — (”—C”)2
the eigenvalues of the Dirichlet problem for the Laplace operator A. Denote by ¢; . =
sin (72) sin (3%) sin (™22) the eigenfunctions corresponding to —A7,, ..
We introduce the $-valued random K-processes. The sequence K is defined as follows:
K={vimn: Vimn= lmn} By formula (7), we obtain the §-valued Wiener K-process
in the form

o
Z Vl,m,nﬁl,m,n (t) Plm,n,

I,m,n=1
where ()., (t) is a product of three independent one-dimensional Wiener processes (6).
Define the operators

5 07
L=A, M__FGQ’ N=1I
as elements of the space E(UKLg;FKLz) by virtue of Lemma 1. Also, define the
inhomogeneity function as the Nelson—Gliklikh derivative of the Wiener process

g =wx (t).

Therefore, we reduce mathematical model (3) — (5) to Cauchy problem (9) for abstract
equation (8).
Since {@1mn}t C C®(D), then

© 2
,LLQL — M = |:_)\l2,m,n/‘b2 - F2 <7> :| < Plmmns > Plm,ny

where < -, > is the inner product in L*(D). The equation
)‘lmn:u’ +F2 (Wn> =0
c

determines the relative spectrum of the operator M:

Fmn
+ o .
Hionn = :|:72 1.
c

l,m,n
_>
Therefore, (M) = {uf, .} is the L-spectrum of the operator M and is bounded.
Construct the propagators according to the Theorem 2. Since the relative spectrum of
the operator M is discrete, we obtain

o
t _ F
%WO - Z cos ( \/)\ZLt) < Spl,m,n,wo > gpl,m,na
l,m,n

I,m,n=1

Viw, =

_Fmn F7rn
§ sin t) < @y wi > Y .
D] ,m,ns , M,
lmn=1 \/)‘lmn < \/ lmn
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Due to the fact that “white noise” wg (t) is not differentiable with ¢ = 0, the integral
in formula (10) does not make sense and conditions of the Theorem 3 are not satisfied. In
order to overcome this difficulty, we use the method proposed in [10]. In order to use this

method, we transform the second term from the right-hand side of (10) as follows:
t t

/ Vi wie (t)(s)ds = — Vi wge(t) — / %(Vbt‘s)wx(s)dF

€ €
t

= —V/fwg(e) + /Votsz(s)ds.

I3
In this case, integration by parts makes sense for any ¢ € (0,t), ¢t € R, by virtue of the

definition of the Nelson—Gliklikh derivative. If ¢ — 0, then we obtain
t t

/Vf‘s wi (s)ds = /VOt_SwK(s)ds.

0 0

Therefore, the conditions of Theorem 3 are fulfilled. Hence, there exists the unique solution
to problem (2) — (5) given by .

w(z, t) = Viwy + Viw, + /Votsz(s)ds.
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CTOXACTUYECKAA MATEMATUNYECKAA MOJEJIb
BHYTPEHHUX BOJIH

E.B. Bwuxos', A.B. Bozomonos®, K.I0. Komaosaros
Oxkm0-Ypasbekuit rocyapeTBenHbIi yHIBEPCUTET, T. JeIa0nHcK,

Poccniickas ®enepariust

2Canxr-Tlerep6yprexuit mHCTUTYT MHMDOPMATHKH U aBTOMAaTH3aluKl PoccuiicKoil
akajiemnn Hayk, I. Cankt-Ilerepoypr, Poccuiickas @eneparms

B pabore npoBeieHo ucciegoBaHne MaTeMaTUIeCKONH MOJE/IN BHY TPEHHIX I'PABUTAIIM-
OHHBIX BOJIH C 3 JIMTUBHBIM <OeJIbIM IIIyMOM>, KOTOPBII MOJIE/JUpYyeT CJIydailHble HEOIHO-

poxuocTU cpeabl u diayKTyaruu. Maremarnaeckas MOAEIb CTPOUTCH HA CTOXACTUIECKOM
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ypasuenuu CoboJieBa, KpaeBbix yciaoBusax Jlupuxie u Hagaabaom ycsrosuu Koru. Marema-
THYeCKas MOJIEJb CTPOUTCS Ha croxacTudeckoMm ypasueHnu CoboJieBa, KPAEBBIX YCIOBUSX
Hupuxiie u HagaabaoM yciaosuu Kommu. Ypasuerrne CoGoJieBa Moty 9eHO U3 MPEIIOI0KEHUsT
O PaCIPOCTPAHECHUYU BOJIH B OAHOPOILHON HECXKUMaeMOH Bpallaroleiica ¢ IOCTOAHHOR yIIo-
BOI CKOPOCTBIO JKUJIKOCTHU. Pelenue 3Toii 3a/1a491 Ha3bIBAETCA MHEPIUOHHON (rUpoCKomrye-
CKOI1) BOJIHOA, IIOCKOJIbKY OHa BO3HMKAET B CUJIy 3aKOHA APXUMeIa U [0/ BO3AeHCTBAEM CILIT
nraeprun. [Tox «6embiM myMonM> MBI Toipa3dyMeBaeM mpousdBoanyio Hembcona — [imukmmxa
BHHEPOBCKOTO mporiecca. VccaenoBanne IpoBeIeHO B paMKaX TEOPUH OTHOCUTEHHO Orpa-
HUYEHHBIX OIIEpATOPOB U TEOPUU CTOXACTUYECKUX YPaBHEHUI CODOJIEBCKOTO TUIA, U TEOPUH
(mosty )rpynn omneparopos. IIokazaHo, YTO OTHOCHTENbHBII CIIEKTD OIIEPATOpa OTPAHUYEH, U
[IOCTPOEHO PEIIleHNEe B OIEPATOPHOM BUJIE.

Karouesvie cao6a: omuocumenvro ozpanudertvie onepamopos; ypasuernue Coboaesa;

nponazamopv; <6eavill wym>; npoudsodnas Heavcona — Iiurauzxa.
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