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A. V. Egorov, S. Mondié

A STABILITY CRITERION FOR THE SINGLE DELAY
EQUATION IN TERMS OF THE LYAPUNOV MATRIX

1. Introduction. In the case of delay systems the Lyapunov-Krasovskii functionals
method plays the role of the second Lyapunov approach for the case of ordinary differential
equations. The main idea of the method, proposed by Krasovskii in [1], has been developed
for linear systems in [2-6].

In [6] complete type functionals, admitting a quadratic lower bounds, were proposed. The
functionals have been applied both to the stability analysis and to solutions of some related
problems [7-9]. The complete type functionals depend on special matrix valued functions,
called, by analogy with ordinary differential equations, the Lyapunov matrices.

It is of interest to find conditions on a Lyapunov matrix, which guarantee the stability
of the system. Such conditions have been established in [10] for the linear single delay
equations. In [9] some necessary stability conditions have been obtained for the single delay
linear systems. In our contribution it is proved that these necessary conditions become
sufficient for the case of scalar single delay equation.

The organization of the paper is as follows. In the section 2 a linear delay equation is
introduced and stability region for the equation is provided. In section 3 Lyapunov-Krasovskii
quadratic functionals with prescribed time derivatives are presented. Section 4 is devoted to
the computations of the Lyapunov auxiliary function. The main contribution, a new stability
criterion, is proved in section 5. Some concluding remarks end the paper.

2. Preliminaries. We consider a linear time-delay equation of the form

x(t) = ax(t) + bax(t —1), t=>0, (1)

where a,b € R.
Let us introduce the following notation:
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where z(t, ) is the solution of (1) with the initial time instant ¢y = 0, and a function ¢.
It is supposed that the initial function belongs to the space of piecewise continuous, on the
segment [—1, 0], functions PC?([-1,0], R),

LC(G,QD) = @(9)7 AS [_170]‘ (2)

It is known [11] that the initial value problem (1), (2) has a unique solution, defined on
[—1, 00).
We will use the norm

lolln = sup [p(0)].
0c[—1,0]

The equation (1) is said to be exponentially stable if there exist constants v > 1 and
o > 0, such that
jz(t, )| < ve~ ! l@lln, t=0.

The characteristic equation for the equation (1) is
s—a—be ?=0. (3)

The exact exponential stability domain in space of coefficients is [12]

a=({a+v<o}n{a-b<o})u
U({|a|+b<0}ﬁ{a+bcosm<0}ﬁ{m<w}).

The first term of this union describes the delay-independent part of the exponential stability
domain, while the second term describes the delay-dependent part. The region €2 is depicted
in figure with the curves, corresponding to parameter values for which the characteristic
equation (3) has pure imaginary roots.

b

1 1 L L L

-10 -5 0 5 10 a

Exponential stability region of (1)
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For a symmetric matrix @, the notation @ > 0 (Q > 0) means that @) is positive definite
(positive semidefinite).

3. The Lyapunov-Krasovskii approach. According to the second Lyapunov method,
the exponential stability of delay free system

i(t) = Ax(t) (4)

is equivalent to the existence of two positive-definite quadratic forms v(z) = #7Vz and
w(z) = 2T Wz, satisfying the condition

d
4 0@®) = —w(x())

along the solutions z(t) of system (4).

In [6, 7], a generalization of this method was given for delay linear systems. In particular,
the true counterpart of the quadratic form v(x) for equation (1) is the functional

0
() = u(0)*(0) + 209(0) [ u(b -+ 1)p(6) db +

0 0 0
B / / P(01)u(br — 02)p(0) by by + w1 / F0)d0, (5)

~1-1 -1
where w; is some positive constant, and u(7) is the function, satisfying the set of equations
u(—=7)=u(r), 720, (6)
(1) = au(t) + bu(r — 1), 7>=0, (7)
au(0) + bu(—1) = —w, (8)

. Wo +wy . . ..

where w = ————, and wy is an arbitrary positive constant. In the case of delay systems

this function is named the Lyapunov delay matriz. In this paper we name it the Lyapunov
function.
The derivative of the functional (5) along the solutions of equation (1) is —w(x;), where

w(p) = wop?(0) + w1*(—1).

The proof of the following theorem can be found in [6].

Theorem 1. Fquation (1) is exponentially stable if and only if the set of equations (6)—
(8) admits a unique continuous solution, and for any (there exists) number wy € (0,2w)
there exists a constant 3 > 0, such that the following inequality holds:

v(p) = By*(0).

Phrase “for any (there exists)” means that the theorem remains true if we use “for any”
or “there exists”.

4. The solution of the system (6)—(8). If we have the Lyapunov function a(7),
satisfying the system (6)—(8) with @ = 1, then the Lyapunov function for any @ can be
defined as u(7) = wu(7). Therefore, without any loss of generality, below, we take w = 1.
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The Lyapunov function u(7) on [0, 1] is a solution of the system
W(r) = au(T) + bu(l — 1), (9)
au(0) + bu(l) = —1. (10)

The following theorem gives exhaustive information about u(7), satisfying (9), (10). The
following identities, which are extensively used, are recalled:

[0 —Q
cosha = % = cos(ia),
et _ e~
sinh o = — = —isin(ia).

Theorem 2. Let us set A\ = a2 — b2 and X = Vb2 — a2. All values in the following
expressions are real:

1) if |a| > |b], a + bcosh X # 0, then

_ bsinh A(1 — 7) —asinh A7 — Acosh A
N Ala + bcosh ) ’

u(7)

2) if |a| > |b], a + bcosh A =0, b > 0, then

_coshA\(1—7)
U = Xemha
3)ifa=0b,b+#0, then
()_b__l
u(r 55 T3

4) if |b| > |a, a + bcos X # 0, then

_ bsin A(1 — 7) —aSiH:\iT—}V\COS}V\T.

Xa + bcos\) ’

u(7)

5) if b > |al, a +bcos A = 0, bsin X > 0, then
_cosX(l—T)
Asin A

In the remaining cases, the Lyapunov function u(7) does not exist.
P r oo f. Let us differentiate the equation (9):

u(r) =

U(T) = aiL(T) — bﬂ(l — 7') = a(au(q—) + bu(l _ 7_)) .
= blau(l = 7) + bu(r)) = (a* = b)u(r) = Nu(r) = =Nu(r). (11)

Consider first the third case: a® — b* = 0. It is evident that the general solution of (11)
has the form

u(t) = Cy7 + Cs.

Substitution of this expression into (9) gives
C1 =a(Ci7+ C2) +b(C1(1 — 7) + C2),
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hence,
b-1)C1+ (a+b)Cy =0,

(a - b)01 =0.
The expression (10) takes the form

bCy + (a4 b)Cy = —1.

The obtained system is consistent if and only if a = b # 0. In this case u(7) has the form
given in the third item of the theorem.
If |a| > |b|, then A is real and the Lyapunov function belongs to the family

u(1) = C1 cosh AT + Cy sinh A7

Substitution into (9) and (10) gives us the system for determination of C; and Cs:

(A +bsinh \)C; — (a — beosh \)Csy = 0, (12)
(a +bcosh A\)Cy — (A —bsinh A)Cy =0, (13)
(a +bcosh A\)Cy + bsinh ACy = —1. (14)
When a + bcosh A # 0,
- _ A —bsinh A
"7 " Xa+bcosh \)’
1
CQ - —X

These satisfy (12) and give the expression for u(7) of the first item of the theorem.
The equality a + bcosh A = 0 implies a = —bcosh \. Hence,

A= Va2 — b2 = y/b2(cosh® A\ — 1) = |bsinh \|.

If bsinh A < 0, the equation (13) is inconsistent with (14). If bsinh A > 0 (equivalently, b > 0,
because sinh a > 0 for o > 0), then

_ cosh A

"7 Xsinh X\’
1

CQ - —X

Consider now the case a2 — b2 < 0, i. e. |a| < |b|. Notice that X is real. The general
solution of (11) is ) .
u(1) = C1 cos AT + Cy sin AT.

The fourth theorem item is direct consequence of the first item, as A = i.

But the fifth theorem item could not be obtained from the second item, because
hyperbolic sine is positive function of the positive argument, in contrast to trigonometric
sine.

In this case the condition A — bsinh A = 0 which follows immediately from equation (13),
is equivalent to i|bsin \| — ibsin A = 0 or bsin A > 0. O

Denote the set of parameters (a,b), for which the Lyapunov function exists, by E.
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5. The exponential stability criterion. In [9] some necessary stability conditions
have been obtained for the single delay linear systems.
Theorem 3. If the system

i(t) = Ax(t) + Ba(t — 1),

where A, B € R™ ", is exponentially stable, and the matriz B is non-singular, then the
following inequalities hold:

U(0) > 0,
U) Ut(r)
( U(T) U(O) > > 0, T E [0, 1],

where U(T) is the Lyapunov delay matriz (see [7]).

The following theorem shows that these necessary conditions become sufficient for the
case of scalar equation.

Theorem 4. The equation (1) is exponentially stable if and only if the Lyapunov matrix
for (1) is well defined on [0,1], and

u(0) = [u(r)|, 7 el0,1],

which is equivalent to
w(0) > |u(r)], 7€ (0,1]. (15)

If the equation (1) is non-exponentially stable, then the Lyapunov matriz is not well defined.

P r o o f. It has been shown [7] that

e if (1) is non-exponentially stable, the Lyapunov matrix is not well defined;

e the equation (1) is not exponentially stable, if the Lyapunov matrix is not well defined.

Therefore, it remains to show two following statements:

L If (a,b) € Q, then u(0) > |u(7)| for any 7 € (0, 1].

IL. If (a,b) € A= E\ Q, then u(0) < |u(7)| for some 7 € (0, 1].

Let us prove the first item. Divide €2 into a union of four domains:

O ={a<—|bl}Nn{a+bcosh\ # 0},
Qo ={a+bcoshA=0}N{b>0},
Q3 ={a=0b}n{a <0},
Q4 = {|a|+b<0}ﬂ{a+bcosx<0}ﬂ{X<7T}.
1. The domain ©; corresponds to the first item of theorem 2, and

A — bsinh A

w0 = = e T beosh )

Obviously, if b < 0, then u(0) > 0, because a < 0. Consider now the case b > 0. Notice that
A+ bsinh A # 0, therefore,
A% — b?sinh? \ a — bcosh A

UO0) = T hcosh A (A £ bsmb ) AN T bsmb )’

This expression is positive for every b > 0. As u(0) > 0, we can raise both sides of (15) to
the second power. Consider the expression
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(u?(0) — u?(1)) A*(a+ beosh \)?> = (A — bsinh A)* —

— ((\ = bsinh \) cosh A7 + (a + bcosh \) sinh A7)? =

= —sinh A7 (2(A — bsinh \)(a + bcosh A) cosh A\t +
+ [(A = bsinh A\)? + (a + beosh A)?] sinh A7) =

1
=3 sinh A\re " (()\ —a— be>‘)2 — (/\ +a+ be_)‘)262k7> >
> Asinh Are ™7 ((A —a) — 2be* — (a + ) eZA) . (16)
Asa+ = —la|+ Va2 = < —|a|+|a] =0, A —a > 0, and /(A —a)|a+ A = |b], the

chain of equalities can be continued:
(u®(0) —u?(1)) A%(a + beosh \)? >
> Asinh Are ™7 (A — a) — 2sign(b) be* + |a + A| e**) =

2
= Asinh Are™?" (\//\ —a —sign(b)y/|a + )\|e>‘) > 0.

Non-negativity of the last expression is obvious. Let us prove that the equality to zero is
impossible. If b < 0, the inequality is evident. Consider the case b > 0. Let VA —a —
V]a+ Me* = 0. Multiplication by v/A — a result in be* = X — a, while multiplication by
A=A
Vla+ M| gives be™ = —\ — a. As cosh A = %,
A—a n -A—a
2 2

a+bcoshA =a+ = 0.

But a + bcosh A # 0 in ;. We arrive at a contradiction. It proves inequality (15) for €.
2. As coshz is a positive and increasable function for = > 0, the inequality (15) holds

for Q.
3. For Q3 the inequality is also obvious.
4. Consider y: L

bsin A — A
Ma+bcos))

Asb <0, A<, and a+bcos < 0, then u(0) > 0. Hence, we can raise both sides of (15)
to the second power. Consider the expression

(u?(0) — u?(7)) X(a+beosA)? = (A —bsin\)? —
— (A= bsinA) cos AT + (a + beos A) sin A7) >
> sin® A7 ((X —bsinA\)2 — (a4 beosA)? —

~ ~ _ N o 5
_Q(A—bsin)\)(a+bcos)\)cot)\) — sinZ - <)\_+.a7€xos> -
sin
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The last inequality is not SO 0bv1ous Therefore, we should show that b+acos X < 0. Suppose
acosA > —b> 0, then a2 cos? A > A2 +a2 or 0 > A2 +a?sin \. We arrive at a contradiction.
Prove the item II. The domain A can be divided into a union of domains:

Ay ={a> b} N{a+bcosh\ # 0},
Agz{a:b}ﬁ{b>0},
Agz{b> |a|}ﬁ{a+bcosX7éO},

Ay = {b < —|a|} N ({X > w} U {a—H)cosX > 0}) ,
As = {|b| > |a|} N {a—i—bcosx = 0} N {bsinx > 0}.

It remains to find a point 7 € (0,1] for each pair of parameters (a,b) € A, such that

w(0) < fu(T)[-
1. Consider the set A;. Using the chain of conclusions (16), we obtain
(u®(0) — u?(1)) A*(a + beosh A)? =
= Asinh e ™ (—2be>‘ —a (e2A + 1) - A (62A — 1)) <
< Asinh Ae™* (ZaeA ( 24 1) ( A 1)) <

<Asinbde™ (—a (X =1)" = A (> - 1)) <0,
This implies that ©2(0) < u?(1) and u(0) < |u(0)] < |u(1)].
2. On Ag: u(0) +u(l) = —% < 0. Hence, u(0) < —u(1) < |u(1)].

3. Let us consider the set Az. Take the point 7 =1 — %, where o« = arccos ( b) This

point belongs to the interval (0,1), when either X > 7 or a — beos A > 0. Introduce the
function N N
g+(7) = (u(0) + u(7))A(a + beos \).

The value at the point T is

9+ (7) = (u(0) + u(?))A(a + beos A) = bsin A — A + bsina —

— asin(A — a) — Acos(A — @) = bsinX—X+b% —
a2~ a\N o~ ax o~ N\~
—?SIHA-I-TCOS)\—TCOSA—ysIH/\—O.

The derivative of the function at 7T is

¢ (7) = (au(T) + bu(l — ?))X(a + bcos X) =

= absina — a®sin(\ — a) — aXcos(\ — a) +

+ b%sin(A — o) — absina — bAcosa = —A(a + bcos \) # 0
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This means that at the point 7 € (0, 1) the function has no extremum, i. e. it changes sign.
So, we can find a point T either from the right or from the left of the point 7 (it depends

upon the sign of a + beos A) to get u(0) < |u(7)|.
Consider the case with A < 7 and a — bcos A < 0. Take the point 7 = 1:

(u?(0) — U2(1))X2(a + bcos X)2 =

-~ N2
(bsm (asin)\—i—)\cos)\) =

= 2Xsin A(Asin A — b — acos \).

If0 < XA <mandb> |a|, then b+ acos A > 0. Show that Asin A < b+ acos\. Consider the
difference _ o
(b4 acos\)? — (Asin\)? =

=%+ a®cos® X + 2abcos A — b2 sin® A + a®sin? A =
= 1% cos® A+ a® + 2abcos X = (a+ beos X)? > 0.
4. Take now the point 7 =1 — X7 where o = arccos <_5) In A4 this point belongs to
the interval (0, 1). The function
g- (1) = (u(0) — u(r))A(a + beos \)
takes the value

g—(7) = (u(0) — u(7))A(a + bcos A) = bsin A — A — bsina +

+ asin(A — @) + Acos(A — @) = bsinX—X+b% —
a2~ aX o~ ax o~ A~
—?sm)ﬂ—fcom\—Tcos)\—?sln/\—().

The derivative at this point is equal to
g (7) = —(au(@) + bu(l — 7)) A(a + beos \) =

= —absina + a®sin(A — &) + axcos(A — a) —
— b?sin(A — @) + absina + bAcosa = —A(a + beos A) # 0

We can find the point 7, for which «(0) < |u(7)|, like in the item 3.

5. In the domain Ajy .

2 2
u (0) —u (1)——§ < 0.
The theorem is proved. O
Given theorem can be viewed as the generalization of the classical Lyapunov result for
the scalar case.
6. Conclusion. A criterion of the exponential stability for the single delay equation is
presented. The conditions of the criterion depend on the Lyapunov matrix-function of the
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equation. In the future we plan to extend the result for a wider class of linear time-delay
systems.
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