

Оощероссийский математический портал

И. М. Гильмутдинов, И. И. Гильмутдинов, И. В. Кузнецова, А. Н. Сабирзянов, Растворимость сверхкритического диоксида углерода в полиэтиленгликоле-4000, *ТВТ*, 2016, том 54, выпуск 1, 69–72

DOI: 10.7868/S0040364416010026

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 3.133.135.8 13 ноября 2024 г., 00:44:34

УДК 533.1,536.75

РАСТВОРИМОСТЬ СВЕРХКРИТИЧЕСКОГО ДИОКСИДА УГЛЕРОДА В ПОЛИЭТИЛЕНГЛИКОЛЕ-4000

© 2016 г. И. М. Гильмутдинов, И. И. Гильмутдинов, И. В. Кузнецова, А. Н. Сабирзянов

Казанский национальный исследовательский технологический университет E-mail: gilmutdinov@kstu.ru Поступила в редакцию 01.08.2014 г.

Представлены экспериментальные результаты по растворимости сверхкритического диоксида углерода в полиэтиленгликоле с молекулярной массой 4000 на изотермах T = 313, 323, 333 К в диапазоне давлений P = 10-35 МПа. На основе решеточной модели Санчеса–Лакомба описаны результаты по растворимости, получены эмпирические параметры бинарного межмолекулярного взаимодействия для системы "сверхкритический СО₂–полиэтиленгликоль-4000".

DOI: 10.7868/S0040364416010026

ВВЕДЕНИЕ

В настоящее время в химической и фармацевтической промышленности все чаще делается упор на применение биоразлагаемых и биодеградируемых полимеров. Это связано с экологическими аспектами и эффективностью применения новых фармацевтических соединений. Для части технологических процессов необходимыми являются измельчение биоразлагаемых и бодеградируемых полимеров до микро- и наноразмеров, получение пористых структур, внедрение в объем полимера других веществ. Классические методы измельчения, вспенивания и импрегнации имеют ограничения, связанные с низкой температурой плавления и деструкции полимеров. В отличие от классических методов, сверхкритические флюидные (СКФ) методы лишены отмеченных недостатков [1, 2]. Например, процесс получения частиц из газонасыщенных растворов (Particle from Gas Saturated Solution – PGSS) основан на растворении сжатого газа в расплавленном материале и перемешивании под давлением в экстракторе до насыщения. Как правило, полимеры могут растворить сжатый газ в объеме до 50% от своего веса. Затем сжатый газ расширяется через микронный канал, и в результате очень быстрого снижения температуры, вызванного расширением СКФ, образуются твердые частицы.

PGSS-процесс отлично подходит для производства частиц полимеров, а также для инкапсуляции активных веществ в полимерный носитель. PGSS-процесс также может быть использован для создания частиц, заполненных жидким активным веществом. С теоретической точки зрения растворимость СКФ в полимере играет ключевую роль и влияет на такие механизмы в формировании частиц, как зародышеобразование и рост частиц из переохлажденной жидкости. Высвобождаясь из полимера в нормальных условиях, сверхкритический флюид формирует в нем пористую структуру, что приводит к увеличению размера и удельной поверхности получаемых частиц. Существующие теоретические модели PGSS не учитывают этого явления, что приводит к существенному разногласию теории и эксперимента [3].

Также явление растворения СКФ в полимере может быть использовано для внедрения в объем полимера таких ингредиентов, как пластификаторы, красители, антипирены, фармацевтические субстанции и т.д.

Но для реализации всех вышеотмеченных процессов на основе СКФ-методов нужны надежные данные по растворимости сверхкритических флюидов в полимерах [4, 5] и математическое описание этих явлений [6, 7].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Принципиальная схема установки для исследования растворимости изображена на рис. 1. Исследование растворимости осуществлялось статическим методом. Данная установка позволяет проводить исследования в диапазоне давлений 6–40 МПа и температур – от 293 до 573 К.

Перед началом эксперимента производилась загрузка полимера в экстрактор 10, после чего экстрактор взвешивался. Далее включался термостат 3 для охлаждения головок насоса 6 и теплообменника 4. Процесс термостатирования продолжается до достижения температурой охлаждающей жидкости значения -5°C.

Рис. 1. Схема экспериментальной установки: *1* – баллон с диоксидом углерода, *2* – фильтр-осушитель, *3* – термостат, *4* – теплообменник охлаждения, *5* – расходомер, *6* – насос, *7* – электронагреватель, *8* – вентиль, *9* – система управления давлением и температурой, *10* – экстракционная ячейка, *11* – манометр, *12* – дроссельный вентиль, *13* – термостат-нагреватель.

Температура экстрактора задавалась и поддерживалась с помощью блока управления 9. Из баллона 1 диоксид углерода с давлением 5–6 МПа попадал в охлаждающий теплообменник 4 через фильтр осушитель 2. Далее жидкий CO₂ через теплообменник 4 поступал в насос 6, где сжимался до данного давления, после чего диоксид углерода поступал в экстрактор 10 (объемом $V = 3 \times 10^{-5}$ м³), который находился внутри воздушного термостата 13. Вследствие нагрева CO₂ переходит в сверхкритическое состояние и начинает насыщать исследуемое вещество. Вентиль 8 находится в открытом положении для поддержания постоянного давления в экстракторе.

Эксперимент продолжался не менее 5 ч до полного насыщения полиэтиленгликоля (ПЭГ) диоксидом углерода. Экстрактор с загруженным полимером взвешивался на аналитических весах с погрешностью ±0.0001 г до и после эксперимента. Разница масс до эксперимента и после показывает количество диоксида углерода, растворившегося в полимере. Растворимость сверхкритического диоксида углерода в ПЭГ рассчитывается по формуле

$$Y^{\scriptscriptstyle 3\mathrm{KC}} = \frac{m_{\mathrm{CO}_2}}{m_{\mathrm{CO}_2} + m_{\mathrm{PEG}}}$$

Таблица 1. Растворимость сверхкритического CO_2 в ПЭГ-4000

<i>Р</i> , МПа	$Y^{ m экc}$	<i>Р</i> , МПа	$Y^{ m экc}$	<i>Р</i> , МПа	$Y^{ m экc}$
T = 313 K		T = 323 K		T = 333 K	
10	0.032	10	0.042	10	0.05
15	0.04	15	0.056	15	0.058
20	0.047	20	0.06	20	0.067
25	0.049	25	0.0675	25	0.078
30	0.052	30	0.072	30	0.09
35	0.068	35	0.082	35	0.11

где $m_{\rm CO_2}$ — масса диоксида углерода, растворившегося в полимере; $m_{\rm PEG}$ — масса ПЭГ-4000.

Для взвешивания экстрактора до эксперимента и после использовались аналитические весы VIBRA HTR-220CE фирмы Shinko.

В настоящей работе в качестве полимера использовался ПЭГ с молярной массой 4000 г/моль фирмы Panreac (Испания). ПЭГ растворим во многих органических растворителях: бензоле, четыреххлористом углероде, хлороформе, диметилформамиде, ацетонитриле. Также он хорошо растворим в воде. Растворимость существенно падает с увеличением молекулярной массы полимера. В зависимости от средней молекулярной массы полимер является вязкой жидкостью, гелеобразным или твердым веществом. Полиэтиленгликоль нетоксичен и может входить в состав пищевых продуктов, а также фармацевтических препаратов.

В качестве СКФ использовался диоксид углерода с чистотой 99% (ГОСТ 8050-85). Диоксид углерода – бесцветный газ, имеющий кисловатый запах, тяжелее воздуха, продукт полного сгорания углерода. Критические параметры СО₂: $T_{\rm kp}$ = 303.9 K, $P_{\rm kp}$ = 7.38 МПа. Выбор диоксида углерода в СКФ-процессах обусловлен пожаро- и взрывобезопасностью, нетоксичностью и доступностью [8].

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

Исследование растворимости сверхкритического CO₂ в ПЭГ-4000 было выполнено для температур 313, 323, 333 К и давлений 10–35 МПа. В табл. 1 представлены результаты исследования растворимости сверхкритического CO₂ в ПЭГ-4000 в зависимости от давления и температуры.

Из полученных результатов видно, что с увеличением давления и температуры в системе растворимость сверхкритического диоксида углерода

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 54 № 1 2016

увеличивается. Это объясняется тем, что с ростом термодинамических параметров плотность СК диоксида углерода стремится к плотности жидкого диоксида углерода, при этом кинематическая вязкость и коэффициент диффузии близки к значениям диоксида углерода в состоянии идеального газа.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАСТВОРИМОСТИ СВЕРХКРИТИЧЕСКОГО ДИОКСИДА УГЛЕРОДА В ПЭГ-4000

Для описания термодинамических свойств сверхкритического растворителя и фазовых равновесий жидкость—пар и жидкость—жидкость пар в системе полимер—растворитель можно применить решеточную модель Санчеса—Лакомба [9]

$$\tilde{\rho}^2 + \tilde{P} + \tilde{T} \left[\ln(1 - \tilde{\rho}) + \left(1 - \frac{1}{r}\right) \tilde{\rho} \right] = 0, \tag{1}$$

где $\tilde{T}, \tilde{P}, \tilde{\rho}$ — значения приведенной температуры, давления и плотности; *r* — количество заполненных узлов решетки. Приведенные параметры чистых веществ можно определить из следующих уравнений:

$$P = P/P^*, P^* = \varepsilon^*/\upsilon^*,$$

 $\tilde{T} = T/T^*, T^* = \varepsilon^*/R,$
 $\tilde{\rho} = \rho/\rho^*, \rho^* = M/(r\upsilon^*),$
 $\tilde{\upsilon} = \upsilon/\upsilon^*$ либо $\tilde{\upsilon} = 1/\tilde{\varrho}.$

где R — универсальная газовая постоянная, υ^* — объем мономера в свернутом состоянии, ε^* — энергия взаимодействия одного мономера с растворителем, M — молярная масса.

Перекрестный член приведенного давления [9] определяется как

$$p_{ij}^* = \left\{ p_i^* p_j^* \right\}^{1/2} \left\{ 1 - \delta_{ij} \right\},$$

где p_i^* и p_j^* – характеристическое давление *i*- и *j*-компонентов соответственно, δ_{ij} – параметр бинарного взаимодействия, который определяет-ся как функция от температуры:

$$\delta_{ii} = A_0 + B_0 T. \tag{2}$$

Параметры A_0 и B_0 находятся путем минимизации отклонений экспериментальных данных от расчетных.

Исходное уравнение Санчеса—Лакомба (1) вместе с указанными правилами комбинирования приводят к выражению для химического потенциала

$$\mu_1 = RT \left\{ \ln \varphi_1 + \left(1 - \frac{r_1}{r_2}\right) \varphi_2 + r_1^0 \tilde{\rho} X_1 \varphi_2^2 \right\} + r_1^0 RT \times \left\{ -\tilde{\rho}/\tilde{T}_1 + \tilde{p}_1 \tilde{\upsilon}/\tilde{T}_1 + \tilde{\upsilon}[(1 - \tilde{\rho})\ln(1 - \tilde{\rho}) + \tilde{\rho}\ln\tilde{\rho}/r_1^0] \right\}.$$

Через равенство химических потенциалов компонентов в обеих фазах можно записать усло-

ТЕПЛОФИЗИКА ВЫСОКИХ ТЕМПЕРАТУР том 54

Рис. 2. Растворимость диоксида углерода в ПЭГ-4000: *1* – *T* = 313 K, *2* – 323, *3* – 333; линии – расчет.

вия равновесия между двумя фазами бинарной системы:

L

$$\mu_1(T, P, \phi'_1) = \mu_1(T, P, \phi''_1), \qquad (3)$$

$$\mu_2(T, P, \phi'_2) = \mu_2(T, P, \phi''_2), \tag{4}$$

где штрих и два штриха показывают различные фазы. Величину химического потенциала можно представить в виде функции, зависящей только от плотности $\tilde{\rho}$, которая в свою очередь зависит от T, P и φ . Плотность $\tilde{\rho}$ определяется решением уравнения (1). Совместное решение уравнений (3) и (4) позволяет находить объемные доли каждой компоненты в любой фазе, в том числе долю сверхкритического диоксида углерода в ПЭГ-4000.

Оптимизация расчетной модели сводится к нахождению подгоночных параметров A_0 и B_0 в уравнении (2). Для этого проводится минимизация функции ошибок по растворимости СКФ в полимере:

$$F = \sqrt{\frac{\sum_{i=1}^{N} (Y^{\text{pacy}} - Y^{\text{skc}})^2}{Q^{\text{skc}}}},$$

где $Q^{3\kappa c}$ — количество экспериментальных точек, $Y^{pac^{q}}$ — расчетная массовая доля диоксида углерода в ПЭГ-4000, которая находится через объемные доли φ .

Данной математической моделью была описана растворимость сверхкритического диоксида углерода в расплавленной ПЭГ-4000 (рис. 2). Характеристические параметры веществ взяты из

№ 1 2016

Таблица 2. Характеристические параметры веществ [10]

Вещество	<i>T</i> *, K	<i>Р</i> *, бар	ρ*, кг/м ³	r
CO ₂	314.8	4388	1416	5.286
ПЭГ-4000	658	485	1182	300

Таблица 3. Параметры бинарного взаимодействия математической модели

<i>Т</i> , К	A_0	B_0
313	1.28	0.135
323	1.25	0.136
333	1.23	0.137

[10] и приведены в табл. 2, параметры модели A_0 и B_0 – в табл. 3.

Как видно из рис. 2, уравнение состояния Санчеса—Лакомба адекватно описывает растворимость для системы СО₂–ПЭГ-4000.

ЗАКЛЮЧЕНИЕ

Получены новые экспериментальные результаты по растворимости сверхкритического диоксида углерода в ПЭГ-4000 при давлении 10—35 МПа и температурах 313, 323 и 333 К. Установлено, что с повышением температуры и давления растворимость сверхкритического диоксида углерода в ПЭГ-4000 увеличивается. Получены эмпирические параметры бинарного межмолекулярного взаимодействия для системы "сверхкритический CO_2 —полиэтиленгликоль-4000" с использованием уравнения состояния Санчеса—Лакомба. Средняя квадратичная погрешность отклонения экспериментальных значений растворимости относительно расчетных не превышает 6.3%.

Работа выполнения в рамках гранта Президента РФ № МК-4440.2014.8.

СПИСОК ЛИТЕРАТУРЫ

- 1. Валяшко В.М. Фазовые равновесия с участием сверхкритических флюидов // Сверхкритические флюиды: теория и практика. 2006. Т. 1. № 1. С. 10.
- 2. Кузнецова И.В., Гильмутдинов И.М., Хайрутдинов В.Ф., Мухамадиев А.А., Гумеров Ф.М., Сабирзянов А.Н. Диспергирование фармацевтическихви полимерных материаловвсвиспользованиемвсверхкритическихвфлюидных сред // Вестн. Казанск. технол. ун-та. 2010. № 2. С. 321.
- 3. Зейгарник Ю.А., Иванов Ф.П. К определению характерного линейного размера для теплогидравлических расчетов пористых структур // ТВТ. 2013. Т. 51. № 1. С. 144.
- Tomasko D.L., Li H., Liu D., Wingert M.J. A Review of CO₂ Applications in the Processing of Polymers // Ind. Eng. Chem. Res. 2003. V. 42. P. 6431.
- Баграташвили В.Н., Богородский С.Э., Коновалов А.Н., Кубышкин А.П., Новицкий А.А., Попов В.К., Уптон К., Хоудл С.М. Получение микрочастиц биорезорбируемых полимеров с помощью сверхкритических сред // Сверхкритические флюиды: теория и практика. 2007. Т. 2. № 1. С. 53.
- 6. Афанасьев А.А. Моделирование свойств бинарной смеси углекислый газ—вода при до- и закритических условиях // ТВТ. 2012. Т. 50. № 3. С. 363.
- 7. Беляков М.Ю., Воронов В.П., Городецкий Е.Е., Григорьев Б.А., Дешабо В.А., Косов В.И., Куликов В.Д., Курьяков В.Н., Юдин И.К., Юдин Д.И. Термодинамика многокомпонентных смесей в окрестности критической точки жидкость—пар // ТВТ. 2012. Т. 50. № 4. С. 514.
- Hyatt J.A. Liquid and Supercritical Carbon Dioxide as Organic Solvents // J. Org. Chem. 1984. V. 49. P. 5097.
- Sanchez I.C., Lacombe R.H. Statistical Thermodynamics of Polymer Solutions // Macromolecules. 1978. V. 11. P. 1145.
- Gourgouillon D. High Pressure Phase Equilibria for Poly(Ethylene Glycol)s + CO₂: Experimental Results and Modeling // Journal Homepage Departamento de Quimica. Monte de Caparica, Portugal, 1999. P. 5369.