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GLOBAL PROPERTIES OF TRANSITION PROBABILITIES
OF SINGULAR DIFFUSIONSY

Hoka3biBaroTCss TIIO0ATIbHASL PETYISIPHOCTH B COBOJIEBCKUX IIPO-
CTPAHCTBAX U MOTOYEUHBIE BEPXHUE OUEHKU I MEPEXOMHBIX TLIOT-
HOCTEN, aCCOIUUPOBAHHLIX ¢ MU GEPEHITNAIILHBIMEI OIIEPATOPAMU BTO-
poro mopsnoka B R" ¢ HeorpammueHHBIM CHOCOM. B kxadecTsBe mpu-
MEHEHUsS MBI TIOJIydaeM HOCTATOYHBbIE yCJIOBUS Mub(EPEHIINDPYyEMOCTI
ACCOLMUPOBAHHON TEPEXOMHON MOYTPYIILI HA MPOCTPAHCTBE HEIpe-
PBLIBHBIX OIPAaHMYCHHBIX GyHKnmil Ha RV,

Kmouesbie caosa u @pasvi: IepexomHble TOIYTPYIIIBL, TEPEXOTHBIE

BEPOSITHOCTHU, PETYISIPHOCTD PeIIeHnH IapadoInieCKuX ypaBHEeHUN.

1. Introduction. Given a second order elliptic partial differential op-
erator with real coefficients

N N
Q=1 i=1

where Ay = Zf\fj:l D;(a;;D;), we consider the parabolic problem
Owu(z,t) = Au(z,t), xRN t>0, (1.2)
u(z,0) = f(z), z € RY, '

where f € Cy(RY).

We assume the following conditions on the coefficients of A which will
be kept in the whole paper without further mentioning.

(H) ai; = aji, F;: RY — R, with a;; € C*™(RY), F, € C2.(RY) for
some 0 < a < 1 and

N
AP < Z ai;(x)6&; < AEJ
ij=1
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for every z,¢ € RY and suitable 0 < A < A.

Notice that the drift F' = (F},..., Fy) is not assumed to be bounded
in RV,

Problem (1.2) always has a bounded solution but, in general, there
is no uniqueness. However, if f is nonnegative, it is not difficult to show
that (1.2) has a minimal solution v among all nonnegative solutions. Taking
such a solution u, one constructs a semigroup of positive contractions 7'(-)
on C,(RY) such that

u(z,t) =T(t) f(x), t>0, zeRY,

solves (1.2). Furthermore, the semigroup can be represented in the form

T(Wf@) = [ playOf@dy.  t>0, aeRY,

for f € C,(RY). Here p is a positive function and for almost every y € RV,
it belongs to CZF*'*/2(RN x (0,00)) as a function of (z,t) and solves the
equation O;p = Ap, t > 0. We refer to Section 2 and [21] for a review of
these results as well as for conditions ensuring uniqueness for (1.2).

Now, we fix z € R and consider p as a function of (y,t). Then p
satisfies

3tp($»y»t) = Azp(:ﬂ:y:t)7 t>0, (13)

where A denotes the adjoint operator of A, which acts on the variable y
(see Lemma 2.1). The great amount of work devoted to these equations
(see, e.g., [1]-]7], [12]-[14], [19], [20] and the references there) witnesses the
interest towards global properties of solutions. Beside the effort to extend
as far as possible the classical results on uniformly elliptic and parabolic
equations, solution measures are important in stochastics, being stationary
distributions in the elliptic case and transition probabilities in the parabolic
one.

For global boundedness and Sobolev regularity, as well as Harnack in-
equalities and pointwise estimates in the elliptic case, we refer to [19] and [4].
Pointwise bounds on kernels of Schrédinger operators, which can be treated
with methods similar to those of the present paper, are proved in [20)].

The aim of this paper is to study global regularity properties and point-
wise bounds of the transition density p as a function of (y,t) € RN x (a,T)
for0<a<T.

We prove that p(z, -, -) belongs to W, *(RN x (a,T)) provided that

T
/ / |F(y)|*p(z,y,t) dydt < oo Vk > 1
agp RN

for fixed z € RY and 0 < ay < a. This generalizes in some sense
Theorem 4.1 in [3]. Under the assumption that certain Lyapunov func-
tions (exponentials or powers) are integrable with respect to p(z,y,t)dy for
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(z,t) € RN x (a,T), pointwise upper bounds for p are obtained. If in ad-
dition F € WL . (RN, R") and |F|*p, | div F|*/?p € L'(R" X (ao,T)) with
k > 2(N +2), then p € W' (RN x (a,T)) and we get uniform upper bounds
on |D,p|. This is the case if F' and div F satisfy some growth conditions of
exponential or power type. Analogously, in the case where F' and its deriva-
tives up to the second order satisfy growth conditions of exponential type,
upper bounds are also obtained for |D,,p| and |0;p|. Notice also that, in some
situations, the semigroup (7'(t)):so is compact on Cy(R"), and hence there
is no semigroup in any space LP(RY) (see [22, Remark 4.3]) and Cy(R") is
not T'(t)-invariant, hence p(x,y,t) 4 0 as |x| — oco. This means that there
is no hope to obtain any decay of p with respect to x.

Finally, if the inward component of the drift term F' is of power type,
then all upper bounds obtained before are independent of x € R" and as a
consequence we deduce that the transition semigroup 7'(-) is differentiable
on C,(RY) for t > 0.

Problem (1.3) (even with time-dependent and less regular coefficients)
has been considered in [6], [7], where the initial datum is a L'-function pu.
In [6] and [7] the authors prove regularity and pointwise estimates for the
solution with respect to the space variables under suitable conditions on
u. Lower bounds are obtained in [7] from Harnack’s inequality. Moreover,
a version of our Theorem 5.1 is proved in [6, Theorem 2.1] assuming that
the function p has finite entropy, see also [7, Corollary 3.5]. Our estimates
are obtained directly for the fundamental solution (i.e., when p is the Dirac
measure) and have an explicit behavior with respect to the time variable.
Bounds for any initial datum g can be obtained from those of the funda-
mental solution after integration, but they explode as t — 0, whereas those
in [6], which exploit some smoothness of p, do not. We refer the reader
also to [24], where other bounds on the fundamental solutions are proved,
in particular situations, using Lyapunov functions which depend also on the
time variable.

Most of our results rely only on the fact that the probability density
p solves a parabolic equation and that the drift F' has some integrability
properties with respect to the measure p(z,-,-) dy dt. This is the case for all
the results in Section 4, where the x variable plays the role of a parameter
and could be omitted. On the other hand, pointwise estimates depend on
the use of Lyapunov functions and therefore in our approach the fact that
p is a transition function becomes essential, see Proposition 2.3. Maybe,
proving the same results in a different way could lead to similar estimates
in wider generality.

Notation. By(x) denotes the open ball of RY of radius R and centre
z. If = 0 we simply write Bg. For 0 < a < b, we write Q(a,b) for
RY x (a,b) and Qr for Q(0,7). We write C = C(ay,...,a,) to point
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out that the constant C depends on the quantities aq,...,a,. To simplify
the notation, we understand the dependence on the dimension N and on
quantities determined by the matrix (a;;) such as the ellipticity constant or
the modulus of continuity of its entries.

If u: RY x J — R, where J C [0, co[ is an interval, we use the following
notation:

0 0

Du = (Dyu,...,Dyu), D?u= (D,ju),

N N
|Dul® =" |Djul?, |D?ul® =) |Djul’.
j=1

ij=1

Introduce the notation for function spaces. Let CJ (RY) be a space of j times
differentiable functions in R" with bounded derivatives up to the order j;
C*(RM) be a space of test functions; C*(R") denote a space of all bounded
and a-Holder continuous functions on R™. We also introduce the space

C>'(Q(a,b)) = {¢ € C*'(Q(a,b)): supp ¢ C Bg x [a, b] for some R > 0}.
Notice that we do not require that u € C?*(Q(a, b)) vanishes at t = a, t = b.

For 1 < k < oo and j € N, denote by W/(RY) the classical Sobolev
space of all L*-functions having weak derivatives in L¥(R") up to the order
j. Its usual norm is denoted by || - ||;x and by || - ||z for j = 0.

Let us now define some spaces of functions of two variables following
basically the notation of [15]: Co(Q(a,b)) is the Banach space of continuous
functions v defined in Q(a,b) such that lim|,_,. u(x,t) = 0 uniformly with
respect to t € [a,b], C*'(Q(a,b)) is a space of all bounded functions u
such that O,u, Du, and D;ju are bounded and continuous in Q(a,b). For
0 < a < 1 we denote by C?**1+%/2(Q(a, b)) a space of all bounded function u
such that 0,u, Du, and D;;u are bounded and a-Hélder continuous in Q(a, b)
with respect to the parabolic distance d((z,t), (y,5)) := |z — y| + [t — s|*/2.
Local Holder spaces are defined, as usual, requiring that the Holder condition
holds in every compact subset.

We shall also use parabolic Sobolev spaces. We denote by W' (Q(a, b))
a space of functions u € L¥(Q(a,b)) having weak space derivatives D%u €
L*(Q(a, b)) for |a| < 2 and weak time derivative d;u € L*(Q(a,b)) equipped
with the norm

ullwz1 @any = lullze@ean + 10ullir@usy + Do 1Dl rr@an-

1<al<2

Let #%1(Qr) denote a space of all functions u € W,"°(Qr) with du €
(WE(Qr)), the dual space of W°(Qr), endowed with the norm

[ull s @r) = ||atuH(W;;O(QT))’ + ”uHW]i’O(QT)a
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where 1/k + 1/k' = 1. Finally, for £ > 2, let ¥*(Qr) be a space of all
functions u € W,"°(Qr) such that there exists C' > 0 for which

’/ udyp dx dt| < C([|9]| /-2 (@r) + (DD Lr/o-1(@r))

for every ¢ € C2'(Q(a,b)). Notice that k/(k — 1) =k, k/(k —2) = (k/2)".
¥*(Qr) is a Banach space when endowed with the norm

[l @r) = l[ullwioqr + 10rullk/2mor

where ||0yul|k/2,k,0, is the best constant C such that the above estimate
holds.

In the paper the transition density p will be considered as a function of
(y,t) for arbitrary but fixed x € R". The notation ||p|| therefore stands for
any norm of p as function of (y, t), for a fixed . Moreover, all the differential
operators, unless otherwise specified, act on the variable y.

2. Local regularity and integrability of transition densities. As
a first step, we construct a semigroup in C,(R") generated by a suitable
realization of A. Since the domain will not be dense in Cy(R"), we cannot
use the Hille-Yosida theorem. Instead we follow a classical approximation
method based on Schauder’s estimates. We only sketch the procedure since
it is presented in detail in [21].

Let us fix a ball B, of centre 0 and radius p. Since A is uniformly elliptic
on this ball, the operator A, endowed with the domain

D(A4) = {u e W2(B,): Au € C(B,), ulos, = o},

p>1

generates a semigroup (7,(¢)):>0 on Cy(B,), see, e.g., [17, Section 3.1.5]. As
a consequence, for every f € C,(R”Y) there exists a unique function u, = T, f
satisfying

Oyu, = Au,, x € B,, t>0,

uy(x,t) =0, x € 0B, t>0,

u,(z,0) = f(z), =z € B,.

The maximum principle yields [[uollec < [|flloc and u,, (z,t) < g, (w,t) if
x € B, and p < 91 < g9, provided that f > 0. Defining

T()f(x) = lim uy(z, 1)
one constructs a semigroup of positive contractions in C,(R"), named the
minimal semigroup associated with A, which satisfies the following proper-
ties.
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Theorem 2.1. For f € C,(RY), let u(z,t) = T(t)f(x), for t > 0,
z € RN. Then

(i) u belongs to the space CLi¥' *>(RN x (0,00)) and satisfies the
equation

dyu(z,t) = Z Di(a;;(x)Dju)(x, t) + Z F;(z)Dsu(z, t);

moreover, if f € C*(RY), then du(x,t) = T(t)Af(x);

(i) T(t)f(z) = f(z) as t — 0 uniformly on compact sets of RY;

(iii) if (gn) is a bounded sequence in Cy(RY) and g, (z) — g(x) for every
z € RN, with g € C,(RY), then T(t)g,(z) — T(t)g(x) in C*' (RN x (0,00)).

In [21] it is also proved that the semigroup is given by a transition
density p(z,y,t), that is,

(@) = | pe5,0f ) dy.

Local regularity properties of the transition densities with respect to the
variables (y,t) are known even under conditions weaker than our hypothesis
(H), see [3]. We combine the results of [3] with the Schauder estimates to
obtain regularity of p with respect to all the variables (z,y,t).

Proposition 2.1. Under assumption (H) the kernel p = p(x,y,t) is a
positive continuous function in RN xRN x (0, 00) which satisfies the following
properties.

(i) For every x € RN, 1 < s < oo, the function p(z,-,-) belongs to
RN x (0,00)). In particular, p, D,p € L, (RN x (0,00)) and p(z,-,-)
18 continuous.

(i) For everyy € RN the function p(-,y,-) belongs to CEE* ' T*/2(RN x

(0,00)) and solves the equation O;p = A,p, t > 0. Moreover,

sup [|p(- ¥, )l ozeonvera(poxieay) < 00
lyI<R
for every 0 <e <T and R > 0.
(ili) If, in addition, F € C*(RN), then p(z,-,-) € WZi..(Qr) for every

r € RM, 1 < s < oo, and satisfies the equation O,p — Ayp =0, where
A'=Ay—F-D—divF

is the formal adjoint of A.

Proof. Assertion (i) is stated in [3, Corollary 3.9].
Let us prove (ii). Since p(z,-,-) is continuous in (y,t) for every fixed z,
we have p(z,y,t) < oo for every ¢t > 0 and z,y € R". Under this condition,
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the proof of [21, Theorem 4.4] ensures that p(-,y,-) € CEi™'T*/*(RN x
(0,00)) for every y € RY and that p solves 9,p = Ap.

Let us fix y e RN, 0 < e <7,and t; > 7. If |y| < R, then the parabolic
Harnack inequality (see, e.g., [16, Chap. VII]) yields

sup p(.’l?,y,t) < Cp(()?y?tl) < C sup p(()?y?tl) =M

e<t<T,2€BaR ly|I<R

for a suitable M > 0. By the interior Schauder estimates (see, e.g., [11,
Theorem 8.1.1]) we deduce that

sSup Hp(',y, ')||Cz+&*1+a/2(BR><[a,‘r])
lyI<R

< C( sup [9:p(+,y,°) — AeD( Y )l coar2(Borx(e/2,)) T M) =CM < cc.

ly|I<R

Finally, we prove that p is continuous in RY x RN x (0,00). If (@, Y, tn) —
(xo,yo,to) with t() > 0, then

‘p(xmynvtn) —p(fco,yo,toﬂ < ’p(xmymtn) _p(anynvtO)‘
+ ’p(iﬂo,ymto) _p(wOa yO»tO)‘-

The last term tends to zero by the continuity of p(zo, -, to) and the first too,
since, by the above estimate, D,p is uniformly bounded in a neighborhood
of (zg, Yo, to)-

Assertion (iii) follows from standard local parabolic regularity.

Proposition 2.1 is proved.

The minimal semigroup selects one among all bounded solutions of equa-
tion (1.2), actually the minimal among all positive solutions, when f is pos-
itive. The uniqueness of the bounded solution does not hold, in general but
it is ensured by the existence of a Lyapunov function, that is, of a CEt®
function W: RN — [0, 00) such that lim ;| W(z) = +00 and AW < AW
for some A > 0. Lyapunov functions are easily found imposing suitable con-
ditions on the coeflicients of A. For instance, W (z) = |z|? is a Lyapunov
function for A provided that Y, a;;(z) + F(z) - < C|z|* for some C > 0.

Proposition 2.2. Assume that A has a Lyapunov function W and let
u,v € Co(RN x [0, T]) N C*H (RN x (0,T]) solve (1.2). Then u = v.

Proof. It is sufficient to show that if such a function u solves (1.2)
with f > 0, then u > 0. Define v. = e *u + ¢W, where € > 0 and ) is such
that AW < AW. Then v, has a minimum point (zg,ty) € RY x [0,T]. If
v (x0,t9) < 0, then ty > 0, since f > 0, and hence 0,v.(xo,ty) < 0. Since
Du,(xo,t0) = 0and 37, ; ai; Dijv. (2o, o) > 0, we have also (A—\)v.(zo,t0) >
0 and this contradicts the equation d,v. — (A — A\)v. > 0. Therefore, v. > 0
and, letting € — 0, v > 0. Proposition 2.2 is proved.



8 Metafune G., Pallara D., Rhandi A.

Now we turn our attention to integrability properties of p and show how
they can be deduced from the existence of suitable Lyapunov functions.

The integrability of Lyapunov functions with respect to the measures
p(z,y,t)dy is given by the following result, which is proved in [22], see
also [1].

Proposition 2.3. A Lyapunov function W is integrable with respect to
the measures p(x,y,t) dy. Setting

((z,t) = /RN p(z,y, )W (y) dy, (2.1)

the inequality
C(z,t) < MW (2)

holds. ~ Moreover, |AW| is integrable with respect to p(z,y,t)dy, ¢ €
CPH(RN x (0,00)) N C(RY x [0, 0), {(,0) = W(z), and

0¢(a,t) < [ pla,y,)AW (y) dy.

Assuming that AW tends to —oo faster than —W one obtains, by Propo-
sition 2.3, that the function ¢ in (2.1) is bounded with respect to the space
variables, see [20, Proposition 2.6]. We repeat here the proof for reader’s
convenience.

Proposition 2.4. Assume that the Lyapunov function W satisfies the
inequality AW < —g(W), where g: [0,00) — R is a convex function such that
limg o g(s) = 400 and 1/g is integrable in a neighborhood of +o0co. Then
for every a > 0 the function ¢ defined in (2.1) is bounded in RN x [a,0).
Moreover, the semigroup (T(t))so is compact in Cp(RN).

P roof. Observe that, since g is convex, we have

[ D9V @) dy > g(C,1)

Then, from Proposition 2.3 we deduce

9i¢(z,t) < /RN p(z,y,t) AW (y) dy < —/ p(z,y,t)g(W(y)) dy < —g({(z,1))

RN

and, therefore, ((z,t) < z(zx,t), where z is the solution of the ordinary
Cauchy problem
{ 2 = —g(Z),

z(z,0) = W(z).

Let ¢ denote the greatest zero of g. Then z(z,t) < ¢ if W(x) < £. On the
other hand, if W(x) > ¢, then z is decreasing and satisfies

- / LR / s (2.2)
z(,t) g(s) 2(z,t) g(s)
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This inequality easily yields, for every a > 0, a constant C(a) such that
2(x,t) < C(a) for every t > a and * € RY. The compactness of the semi-
group is proved in [22, Theorem 3.10]. Proposition 2.4 is proved.

Let us state a condition under which certain exponentials are Lyapunov
functions. Propositions 2.5, 2.6 will be used to check the integrability of |F|*
with respect to p.

Proposition 2.5. Let A be the mazimum eigenvalue of (a;;) as in (H).
Assume that

limsup |z|* P F(x) - < —c, (2.3)
|| =00 |z|
for some ¢ >0, 8> 1. Then W(z) = exp{d|x|’} is a Lyapunov function for
d < (BA)~tc. Moreover, if B > 2, there exist positive constants ¢y, ¢y such
that

C(z,t) < ¢y exp (et ™P/P=2) (2.4)
forz e RN, t > 0.
Proof Let W(z) = exp{d|z|’} and set G; = F; + Y, D;a;;. We
obtain, by a straightforward computation,

_ 5 (1 G8—2
A _ 58|plF-1g0el" ( ) P25 0 (2)aa.
W(z) = é8|z|" e = E a;(z) + ME ;j a;j(x)z;z;

i

]

+60|z|° 3 Zaij(x):pixj +G- a:)
(2%

< Cl|w|5—le5|w\5(1 + (5BA _ C)‘:L‘|ﬁ_1) < —02|£E‘25_266‘$|B <0

for |z| large. This shows that W is a Lyapunov function. Finally, if § > 2
it follows that AW < —g(W) with g(s) = Css(Iln 8)3__2//6 — C,, for suitable
C3,Cy > 0. Then Proposition 2.4 yields the boundedness of ((-,t). To
obtain (2.4) we recall that ¢ < z, where z satisfies (2.2). If £ denotes the zero
of g and z(z,t) < 2¢ we have simply to choose a suitable ¢;. If z(z,t) > 2¢,

then ~ g - J
s s
t < — < C ——— < (41 2/8-1
/z g(s) 5/2 s(ln s)2-2/8 o(n2)

and (2.4) follows. Proposition 2.5 is proved.
The right-hand side of (2.4) becomes very large as ¢ — 0. In order to
have a milder behavior we investigate when powers are Lyapunov functions.

Proposition 2.6. Assume that

limsup |z|' P F(z) - L« 0, (2.5)
T

for some B> 2. Then W(x) = (1 + |z|*)* is a Lyapunov function for every
a > 0 and there exists a positive constant ¢ such that

((x,t) < ct2/(B=2) (2.6)



10 Metafune G., Pallara D., Rhandi A.

forzr e RN, 0 <t<1.
P roof. We have, with the notation of Proposition 2.5,

4a a—1)
AW( ): (1+‘LIZ’| <1+ |22 i +|$‘ Zaz] .’ECCj

o Ge) <~ e =
for |z| large and with v = 1 + (8 — 2)/(2a) > 1. This shows that AW <
—g(W) with g(s) = Cys” —Cj for suitable Cy, C3 > 0. Acting as in the proof
of (2.4) one can show (2.6), the only difference is that the function ¢=2¢/(#=2)
goes to 0 as t — +o00, and then the estimate is not true, in general, for all
t > 0. Proposition 2.6 is proved.

Remark 2.1. Conditions (2.3) and (2.5) are assumptions on the
radial component of F. Of course, changing z/|z| to (z — x0)/|z — 0| leads
to new conditions that, although not equivalent to (2.3), (2.5), yield similar
conclusions.

Finally we clarify in which sense the identity d;p = A;p is satisfied.

Lemma 2.1. Let 0 < a < b and p € C*>'(Q(a,b)). Then

/Q( b)(&:so(y,t)+A<P(y,t))p(ar,y,t) dy dt

= |, @@ 1.0)0(y,0) = p(z,y,a)p(y,a)) dy.  (2.7)

Proof. Ify e C*(RYN), then ;T () = T(t)Ar, see Theorem 2.1(i).

If € C24(Q(a,b)), then (T()p(1)) = T(DP(,1) + T()AS(-,1).
Integrating this identity over [a, b] and writing 7'(¢) in terms of the kernel p,
we obtain (2.7). Lemma 2.1 is proved.

3. Sobolev regularity: Preliminary estimates. In this section we
fix T > 0 and consider p as a function of (y,t) € R" x (0,T) for arbitrary,
but fixed, x € RY. Further, fix 0 < ap < a < b < by < T and assume for
definiteness by — b > a — ag. Setting

1/k
r<k,$,ao,bo>:=( /Q ( b)F<y>|kp<x,y,t>dydt) ERY

we show global regularity results for p with respect to the variables (y,t) as-
suming I'(k, x, ag, by) < oo for suitable & > 1. Observe that if I'(k, , ag, by) <
00, then I'(h, x, ag, by) < oo for all h < k. We also recall that this assumption
can be verified, in many concrete cases, using Propositions 2.5, 2.6.

In the following proposition we show that p € L"(Q(ag,by)) for small
values of r > 1.
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Proposition 3.1. IfT'(1,z,a0,by) < 0o, then p € L"(Q(ag,bo)) for all
re[l,(N+2)/(N+1)) and

HpHLT(Q(ao,bo)) < C(l + F(l,{t,ao,bo))

for some constant C > 0.

Proof. For every ¢ € C>(Qr) such that p(-,T) = 0, by (2.7), we
obtain, with A, as in (1.1), that

/ P(Orp + Aop) dy dt = —/ pF - Dpdydt
Q(ao,bo) Q(ao,bo)
+ [ (0l 9. bo)w, o) = bl ,00) (0, o) dy.

Since [g~ p(z,y,t)dy <1 forallt >0, z € RY, it follows that

’ / P(Owp + Aop) dy dt
Q(ao,bo)

< T'(1, 2, a0, 00)[[llw20 (Qao,pe)) T 2[4l
< (2+T(1, 2, a0, b0) 1@ lw10 (@(ag.b0)) - (3:2)

Fix ¢ € C°(Q(ag,by)) and consider the parabolic problem

Op + Adop =7 in Qr, (3.3)

o(y, T) =0, y € RV, '

The Schauder theory (see [11, Chap. 9]) provides a solution ¢ €

C*rel+a/2(Qr). Fixing 74 > N + 2, by [15, Theorem IV.9.1] we see that ¢
belongs to Wf{l(QT) and satisfies the estimate

(3.4)

HSOHWS;(QT) < C”w LT;(Q(GOJDO)).

Since 7 > N 4+ 2, from the Sobolev embedding theorems (cf. [15,
Lemma II.3.3]) and (3.4) it follows that

lelweo@@oson < Iellwioiar < Clelwzr@rn < CIYI L (a0 b0

Note that the solution ¢ of (3.3) cannot be inserted directly in (3.2), since
it does not have compact support with respect to the space variables. To
overcome this problem we fix a smooth function § € C*°(R") such that
0(y) = 1 for |y| < 1 and write (3.2) for ¢,(y,t) = 6(y/n)¢(y,t). Letting
n — oo and using the dominated convergence we see that (3.2) holds also
for such a ¢. Therefore,

‘ / py dy dt
Q(ao,bo)

< C(]' + F(17 L, Qo bo))H,(/}HLTi(Q(ao,bo))
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and hence p € L™ (Q(ag,bo)), where 1/r; +1/r; = 1. Since r; > N + 2 is
chosen arbitrarily, p € L"(Q(ao,bo)) for all r € [1, (N + 2)/(N + 1)), and

[Pl 27 (@a0.b0)) < C(1+T(1,2,a0,b0)). (3.5)

Proposition 3.1 is proved.

Lemma 3.1. IfI'(k,x,a,by) < 0o for k> 1 and p € L"(Q(ao, bo)) for
some 1 < r < oo, then p € 5 (Q(a,b)) for s :=rk(r+k—1) if r < oo,
s=kifr=o00

P roof. Inthe proof we denote by c a generic constant depending on
k,x,aq,bg.

Let n be a smooth function such that 0 <n <1, n(t) =1fora <t <b
and n(t) = 0 for t < ag and t > by. Consider p € C*(Qr). Substituting nep
instead of ¢ in (2.7) and setting g := np, we obtain

/ a(Brp + Avp) dy dt — / (4G - Dy + ppduy) dydt,  (3.6)

T T

where A1 = Zi,j aijDij and Gz = FZ + DZ(Z;vzl aij).
By Holder’s inequality we have

/ ’F‘sps dy dt = / ‘F‘sps/kps(lfl/k) dy dt
(a() b(]) Q ao,bo)

s/k 1-s/k
< |F|*p dy dt> (/ 2=/ (k=9) gy dt)
Q(ao,bo) Q(ao,bo)

s/k 1-s/k
( |F|kpdydt) (/ P dydt)
ao b()) Q(a07b0)
1-s/k
< I'(k,z,ag,bo)’ (/ P dydt) ,
Q(ao,bo)

1)/k
IGPIl L (@ao o)) < ENPIS (Glm 0y)-

whence

This yields

(k—1)/k

[ a0+ ) dyat] < el oo

where 1/s + 1/s' = 1. Replacing ¢ by its difference quotients with respect
to the variable y,

T_np(y,t) == || (p(y — hej t) — o(y,1),  (y,t) € Qr, 0#heR,

and since a;; € C}(RY), we obtain

| /Q ma(Oup + Arp) dy dt| < elpl gty I lwzron (BT)
T



Global properties of transition probabilities 13

As in the proof of Proposition 3.1 we approximate ¢ in W2’1(QT) with a
sequence of functions ¢, € C?(Qr). Since ¢ € L*(Qr), writing (3.7) for ¢,
and letting n — oo we see that (3.7) holds for ¢.

Since s = (s — 1)s' < r, we find then |7,q|* 21,q € L* (Qr). Using [15
Theorem 9.2.3] we choose now ¢ € W2'(Qr) such that

Op+ Ao = |ThQ|S_2Thq in Qr,
o(y, T) =0, y € RY,

and
||SO||W3;1(QT) < C|||ThQ|s_1||Ls’(QT)-
Therefore, we get

/ Imhgl® dy dt < c||p|| Vol
Qr

L™ (Q(ao,b0))

QT)’

hence,
k—1)/k
104l @n) < ellpllf g
and Dq € L*(Qr), ¢ € W°(Qr).
Now we treat the time derivative. Using the above estimates we deduce
that

‘/ qOsp dy dt| <
Qr

~

k—1)/k
/Q qucpdydt' + clIpl @ ansson [lwo

ck 1
- \ / S ay zsqudydt\+c|p|| el

T 4,5=1
(k—1)/k
CHDQHLS(QT)HWle 0Qr) T CHpHLT(Q)({zg b(,))HSOHWSl;O(QT)

(k—1)/k
C”pHLr(Q)(/aO bo)) HSOHW;;(’(QT)

IN

N

and the statement follows. Lemma 3.1 is proved.

Proposition 3.2. IfT'(k,x,a9,by) < oo for some 1 < k < N + 2, then
p € L"(Q(a,b)) for all € [1,(N+2)/(N+2—k)) and p € H>'(Q(a,b))
forall s € (1,(N +2)/(N + 3 —k)).

Proof. Let us see how the arguments in the proof of Lemma 3.1
can be iterated. Let r; < (N 4 2)/(IN + 1), so that Proposition 3.1 can be
applied, and fix a parameter m (to be chosen later) depending on k and r.
Set a,, = ag +n(a—ag)/m, b, = by —n(by —b)/m for n =1,...,m. Suppose
that p € L™ (Q(an,b,)) and take s, := kr,/(k+ 7, —1). Then, 1 < s, <r,,
Sp < k,and r, = s,(k—1)/(k — s,).

We consider again ¢ = np with n(t) = 1 for a,,41 <t < b,41 and n(t) =0
for t < a,, t > b,. As in the proof of Lemma 3.1 we get

(k—1)/k

‘/ qOp dy dit| < c||pHLTn(Q(anb ))”SDHWJ;O(QT):
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where c¢ denotes a constant depending on k,z,ao,bo. Therefore,
p € A (Q(ansi1,bny1)) and, by Theorem 7.1, we obtain that p €
L™+ (Q(ant1,bn+1)), where

11 1( 1>+1 1
Tor1  Sn N+2 1, k k. N+2
Since 1/r; > (N +1)/(N + 2), it follows that

RIS T R E I
ro T k N +2 E N+2 N+2\k '

Hence, by induction, (1/7,) is a positive and decreasing sequence which con-
verges to (N + 2 — k) /(N + 2). Therefore, for any r < (N +2)/(N + 2 — k),
after finitely many, say m, iterations we get r,, > r and p € L"(Q(a,b)). The
second half of the statement now follows from Lemma 3.1. Proposition 3.2
is proved.

Corollary 3.1. If I'(k,z,a9,by) < oo for some k > N + 2, then p
belongs to L= (Q(a,b)).

Proof. We know from Proposition 3.2 that p € L"(Q(a,b)) for all
r € [1,00). Hence, by Lemma 3.1, p € 55'(Q(a,b)) for all s € (1,k).
Choosing N + 2 < s < k it follows from Theorem 7.1 that p € L>(Q(a,b)).
Corollary 3.1 is proved.

A closer look at the above proof shows that p is globally Hélder contin-
uous in (y,t).

Proposition 3.3. Assume that T'(k,x,aq,by) < 0o for some k > N +2.
Then, p belongs to C([a,b],Cf(RN)) for some v, 6 > 0.

Proof. Since & > N + 2, we can choose a > 0 such that 1/k <

a < % and k(1 — 2a) > N. So, applying the embedding theorem in [13,

Corollary 7.5] for the space %' (Qr) (with g =p =4k, vy =1, and 8 = 20)
we obtain

lp(t) = p(7) lwr-2axme) < Clt = 717 *Ipllsera@any
for a < 7 <t < b, where the constant C' > 0 is independent of 7, t. Thus,

p belongs to the space C*~1/%([a,b], W'~2x*(RN)). Since k(1 —2a) > N, it
follows from the Sobolev embedding theorem that

p € C*Y*([a,b],C¢ (RN)), for some 6 > 0.

Proposition 3.3 is proved.
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4. Uniform and pointwise bounds on transition densities. We
consider the following assumption depending on the weight function w which,
in our examples, will be a power or the exponential of a power.

(H1) Wy, W, are Lyapunov functions for A, W; < W, and there exists
1 <w € C*(RYN) such that for some ¢ > 0 and k > N + 2

(i) w < W4, |Dw| < cw®V/RWHE | D20w| < cwt=2/Rp /",

(i) w|F|* < cWs.

We denote by (i1,(> the functions defined by (2.1) and associated
with Wi, W, respectively.

We use different Lyapunov functions to obtain more precise estimates
in the theorem below and its corollaries.

Theorem 4.1. Assume (H1). Then, there exists a constant C > 0 such
that

bo 1 bo

0<w(y)p(m,y,t)<0< @it o | Cl(m,s)ds) (4.1)

forall z,y € RN, a <t <b.

Proof. Step 1. Assume first that w is bounded. Since
I'(k,z,a0,b0) < oo, we have p € L*(Q(a,b)) for every ap < a < b < by,
by Corollary 3.1. We choose a smooth function 7n(t) such that n(¢) = 1
for a <t < band n(t) =0 for t < ag and t > by, || < 2/(a—ap). We
consider ¢ € C*1(Qr) such that ¥(-,T) = 0. Setting ¢ = n*/?p and taking
o(y,t) = n*?w(y)Y(y,t) in (2.7) we obtain

/ (=0 — Aoy) dydt = /Q ) [q <¢Aow 42 ﬁ: a5; DywD;t

4,j=1

k
+wF - Dy +oyF - Dw) + 2pw¢n(k_2)/20m] dy dt. (4.2)
Since wq € L'(Qr) N L*=(Qr), Theorem 7.3 yields

lwgllze=(@r) < (||CZD2W||L2(Q ) T llaDwl[pr@r) + lwgFllx@r)

1 _
+laF - Dillers(ry + ——lpwn® 27 pussan) ).
a — Qg

Next, observe that, by (H1)(ii),

bo 1/k
(k—1)/k 1/k k—1)/k
JwaFllsan < loal S lwar* [}ia,, < clwalssfs ([ )
ao

and that

(k—2)/k
”Lk/Q(QT) ||quL°° c)g/T prHLl(Q(ao,bO))

(k—2)/k 2
< clal =2 ([ qar)
ag

|wpntk=2/2
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We combine (H1)(i) and (H1)(ii) to estimate the remaining terms:
2/k
HqFDwHLk/z(QT) < </ qk/2w(k 2)/2W2 dy dt)
Qr

(k—2)/k bo 2/k
< C”WQHLOO (Qr) (/ G dt)
ao

and, similarly,

bo 2/k
JaD%loeren) < ol &5 ( [ Gae)
ag
(k=1)/k bo 17k
lgDw||x(gr) < cllwallfie it Gdt) .
ag
Collecting similar terms and recalling that W; < W, we obtain

bo 1/k
foallsan < Clloal & ( [ Gat)
ao

(ke 2)/k bo 2/k 1 bo 2/k
cotenttls ([ en)” s 2o ([ om)”)

Hence, after simple computations,

bo 1 bo
lwgl 2= @r) < C< 5 Czdt+(a_ao)k/2/ao G d’f)’

and (4.1) follows.

Step 2. Ifwisnot bounded, we consider w, = w/(14ew). A straight-
forward computation shows that w. satisfies (H1) with a constant ¢ indepen-
dent of . Therefore, from Step 1 we obtain

bo

0 < w.(y)p(@,y,t) < o(/ Col, ) dt + (G_ZOW /b ¢ (2,1) dt) (4.3)

with ¢ independent of €, and letting € — 0 proves the statement.
Theorem 4.1 can be applied with w = W; = 1 yielding uniform bounds
on p, for fixed z.

Corollary 4.1. Take w =W; =1 in (H1)(i) and assume that (H1)(ii)
holds. Then

L>(Q(a X Z, d + .
Pliz=(@(ab) 2 (a — ag)k/?

ao

Let us now consider some special cases.
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Corollary 4.2. Assume that

limsup |z|* P F(x) - T < —c, (4.4)

~

for some ¢ > 0, 8 > 2, and that |F(z)| < c1e*”" for some €,¢1,c0 > 0.
Then, if v < (BA)"'c, where A is the mazimum eigenvalue of (a;;), the
inequality
0 < p(x,y,t) < czexp(eat 7)) exp(—9yl”)

holds for z,y € RN, 0 < t < T and suitable cs,c, > 0.

Proof We take w(y) =", Wi(y) = Wa(y) = e’ for some v <
6 < (BA)~'c and use Theorem 4.1 with @ =t and a—ag = bp—b = b—a = 3t.
The assertion then follows using Proposition 2.5.

Example 4.1. Let us specialize the above corollary to the case of
the operators

A=A—|z" 2. D
|z

with » > 1. Then Corollary 4.2 can be applied with § = r + 1 and any
v < 1/(r+1). Therefore,

0 < p(z,y,t) < crexp(eat™ "/ D) exp(—[y["H)

forall 0 <t < T, z,y € RM.

Under conditions similar to those of Corollary 4.2, the estimate of p can
be improved with respect to the time variable, loosing the exponential decay
in y.

Corollary 4.3. Assume that

. 1-8 X
limsup |z|" " F(x) - — <0, (4.5)
|00 |z
for some B> 2. If |F(x)| < c(1+ |x]*)" with v1 > (8 — 2)/4, then for every
Y2 >0, k > N 4 2, there exists a constant C' > 0 such that

C _
0< plo,,0) < o (L [)

for all z,y € RN, 0 <t < 1, where
2
=573

Proof. Observe that W,(x) = (1 + |z|?)" is a Lyapunov function for
every r > 0. If {.(z,t) is the corresponding function defined in (2.1), then
Proposition 2.6 yields

o (k= 2)71 +72)-

¢z, t) < ¢, tm2r/B=2
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forr e RV and 0 <t <1 Weseta=tand a—ag=0by—b=>b—a=3t’,
where s > 1 will be chosen later, and we apply Theorem 4.1 with w(z) =
Wi(z) = (1 + |z]?)"2 and Wy (z) = (1 4 |z|*)**™2. Thus we obtain

p(z,y,t) < C(t2(/c’h+’¥2)/(ﬁ2)+s + t272/(ﬁ2)s§+s> (14 [y[2) =

Minimizing over s we get s = 47, /(8 — 2) and the assertion follows.

Example 4.2. (i) Choosing v; = (8—1)/2, 72 = 0 in the above
corollary one obtains the following estimate of the norm of T'(¢) as an oper-
ator from L*(RY) to L°(RY):

IT(8) 2 ey sy < et™FDED/G2 g <t 1,

Observe, finally, that the operator T'(t) need not map L?(RY) into itself, for
any p > 1. A simple example of this situation is given by the 1-dimensional
operator D? — 3D (for which 8 = 4 is in the estimate above), see [22,
Remark 4.3].

(ii) Let us consider again the operators A = A — |z["; - D with r > 1.
Then Corollary 4.3 can be applied with § =r + 1 and ; = r/2 yielding

pla,y,t) < Ct~E2r/ ==/ 4 Jyj2) =0,

5. Pointwise bounds for the derivatives of transition densities.
In this section we derive pointwise estimates for the derivatives of the ker-
nel. The first step consists in showing that p'/? belongs to Wy °(Q(a1, by)).
Observe that estimates in this space are known for invariant measures, that
is, for the limit, as ¢ — oo, of the transition kernels p(z,-,t), see [2], [5],
[19], [4].

As in Section 4, we fix 0 < ag < a < a; < by < b < by < T with
b—bi>a,—a,a —a>a—ag.

Theorem 5.1. Assume that (H1) holds for a certain weight function w

such that .
1 ) €
dy < oo 5.1
/RN (w(y) Y (5.1)

for some ¢ € (0,1). Then the function plnp is integrable in RN for all
t € [a,b] and

|Dp($,y,t)‘2 1 2
7dydt<—/ Fy)l'p(x,y,t)dydt
/Q(a,b) p(z,y,t) A? Q(a,b)’ W)l )

2

- X [p(w,y,t) lnp(x,y,t)]zg dy < 00.
RN

In particular, p'/? belongs to Wy (Q(a,b)).
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Proof. Let us first observe that the functions pln®p and plnp are
integrable in Q(a,b) and in RY for all fixed ¢ € [a, b], respectively, as follows
from Theorem 4.1 and (5.1).

Since p € W,"°(Q(a, b)) by Lemma 3.1, from (2.7) we get

/ poypdy dt = / (ZaijDigoDjp—pF-Dap> dy dt
Q(a,b) Q(a,b)

+ / [p(z,y, ) (t, y))i=, dy (5.2)
RN

for every ¢ € C*'(Q(a,b)). By density, the previous equality holds if ¢ be-
longs to W, (Q(a, b)) with compact support in y. Let us take £ € C=(RN)

such that {(y) = 1 for |y| < 1 and &(y) = 0 for [y| > 2, &u(y) = &(y/n)
and note that, by Proposition 2.1, the functions &2 lnp(z,-,-) belong to

Wy (Q(a,b)). Substituting ¢ = € Inp in (5.2) and writing a(£,n) for
Zi,j a;;§in; we get
Dp, D
[ gopayar= [ (@P2PE 4o mpa(Dp, Dg) - &7 Dy
Q(a,b) Q(a,b) p

— 26, plnp F - D§n>dy dt

t=b
+/ p(,y, )€ (y) np(z,9,1)| _ dy.
RN t=a
That is,
Dp. D t=b
/ 557“( P, p)dydt:—21n+Jn+2Kn+/ £Z[p—plnp} dy, (5.3)
Q(a,b) p RN t=a
where

I / ¢, Inpa(Dp, DE,) dydt,
Q(a,b)

I = / & (F - Dp) dyat,
Q(a.b)

K, = / Eplnp F - DE, dydt.
Q(a,b)

By Holder’s inequality we have
D D 1/2
Q(a,b) p

1/2
X (/ plnp a(Dgn,Dgn)dydt) (5.4)
Q(ab)

Dp, D C
< 5/ §iwdydt+—2 pln? pdydt.
Q(a,b) p EN® JQ(a,b)
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Moreover,

1/2 D2 1/2
< ([ FPpdyar) ([ si’p‘dydt)
Q(a,b) Q(a,b) b

Dp,D C
<< fLCL(p’p)dydt—i—/ |F|2 pdy dt
A JQ(ab) € JQap)

and o
K< [ |Flplpldyat
N JQ(a.b)

Hence (5.3) yields

1 Dp, D
<1<2+>5>/ 5§wdydt<% pln? pdy dt
A Qa,b) p en? JQ(ab)

C C
+— \F\zpdydt—i-*/ |F\plnpdydt+/ §i{p—plnp}
€ JQ(a,b) n JQ(a,b) RY

t=b

dy.

t=a
Letting n — oo, since the function pln®p is integrable in Q(a,b), it follows

that Do D
/ D, Op) b it < o0
Q(a,b) D

and hence, by (5.4), I,, — 0 as n — oco. Since also K,, — 0, letting n — oo
in (5.3) and estimating J,, as above we find that

Dpl? Dp. D
A/ lpldydtg/ wdm
Qab) P Q(a,b) p

1/2 1D, p|? 1/2
< (/ |F|p dydt) (/ — dydt) +/ [p—plnpli=" dy
Q(a,b) Q(a,b) D RN

|Dpl* 1 2 _ t=b
5 dy dt + |F|* pdy dt + [—plnpliZ, dy,
Qab) D 4e Jo(ab) RN
because [z~ P(z,y,a)dy = [g~p(z,y,b)dy = 1, see [21, Proposition 5.9],
and the statement follows if we choose ¢ = A/2. Theorem 5.1 is proved.
Assuming also that F € W' , (RY) and

o00,loc
/ (IF|F + | div F|*?)pdy dt < oo, k> 2(N +2), (5.5)
Q(ao,bo)

we can now prove that Dp is bounded.
Lemma 5.1. Assume that conditions (H1), (5.1), and (5.5) hold. Then
Dp € L*(Q(ay,by)) for all1 < s < 0.

Proof. From Corollary 3.1 and Lemma 3.1 we know that Dp €
L¥Q(a, b)).



Global properties of transition probabilities 21

Consider the function q = np, where n(t) = 1 for a; < ¢t < by and
n(t) = 0 for t < a,t > b. Observe that, by Theorem 5.1, \/g € Wy’ °(Qr).
Let us consider r; > 1 with

1 (1 2) 1,2

o k)k kK
By taking o = k/r; and 8 > 1 such that 2/a 4+ 1/8 = 1, we deduce, using
Holder’s inequality and Theorem 5.1, that

/IF\“IDql”dydtz/ |F|"q"/ g~ *| Dg[*/*|Dg|~*/* dy dt

T Qr

|Dp|2 1/a 1/a ] 178
) </Q( w p " dt) (/Q |F|quydt) </Q IDqI(“‘awdydt>
NG " o
— (/ dy dt) (/ ’F|/€qdydt> </ ‘Dq’k dydt> < 0.
Qen P T Qr

By Proposition 2.1(iii) the function ¢ belongs to W>"},.(Qr) N L (Qr) and
solves the parabolic problem

0iq — Aoq = —F - Dq—qdivF +pdn in Qr,
Q(y70) = 07 (TS RN7

whose right-hand side belongs to L™ (Qr) by (5.5) and the previous estimate.
By the parabolic regularity (see [15, Theorem IV.9.1]), we deduce that ¢q €
W2HQr).

If r; < N + 2 we use again the Sobolev embedding theorem to deduce
that Dg € L**(Qr) for 1/s; = 1/ry —1/(N + 2).

Now, we iterate the above procedure by setting for every n € N

1 2\ 1 2 1 1 1
Tnt1 ( k) Sn + E s, 1, N+2 and %o

If r, < N 4 2 for every n, then 0 < s, < s,41. Take s = lim,, ,, s,. Since
k > 2(N + 2), one can see that

Thus, r, > N + 2 for some n and hence Dq € L>*(Qr), by the Sobolev
embedding. Similarly, if r, = N + 2 for some n, then s, < oo is arbitrary
and hence 7,11 > N + 2, taking s,, sufficiently large and using k& > 2(N +2).
Thus Dqg € L*>(Qr) in all cases.

The statement follows now from Theorem 5.1, since

|Dq|2 1/2 1/2
/ |Dq| dy dt < (/ dydt> (/ qdydt) < 00,
Qr Qr (¢ Qr



22 Metafune G., Pallara D., Rhandi A.

and the proof is complete. Lemma 5.1 is proved.

We can now refine Lemma 5.1 providing also a quantitative estimate for
the W,f}lg—norm of p.

Theorem 5.2. Assume that conditions (H1), (5.1), and (5.5) hold. Then
p(z,-,-) € W;};(Q(al, b1)). Moreover, there is a constant C' > 0 such that

Ip(a, ) Frpagar) ([ P2 gpa)”
P, M oresn, \c{(/ F pdydt> (/ dy dt>
HW’““(Q( b)) Q(a,b) Qab) P

2/k b— a)2/k
+Ipll et b”((/Q( ) |divak/2pdydt> +()>}

a, —a

Proof Take n as in the proof of Lemma 5.1 such that |7|
2/(a; — a). Since Dq € L>*(Qr) by Lemma 5.1, it follows that

_2)21Dq
Qr Qr Va

Dopl2 1/2 1/2
< | Dgl|:2 </ |Dpf dt> (/ |qudydt) .
Q(‘L ) p QT

This gives
1/k
1Dl zsn < ([ 1FPpdyt)
Q(ab)

(k—2)/k |DP’2 1/k
« | Dg||*2 (;/T)</ dy dt) .
Qab) P

Let us consider again the parabolic problem satisfied by g¢:

0iq— Aoq = —F - Dq — qdiv F' + pdn in Qr,
q(y,0) =0, yeR".

Using (5.5) and the previous computation, one can estimate the L*/2-norm
of the right-hand side through the quantity

1/ Dp‘z 1/k
F’“pdydt) Dy {2k ( / |Dpf* dy dt)
([, a5

2/k b—a 2/k
= () raveeepaya) - OO

a; —a

Therefore, g € W,f/:;(QT) and, using the embedding of W,j}g(QT) in L>*(Qr),
we get

lebwesion < ([ Pppagar) itz ([ 2 gya) "
q WI?/12(QT) = Q(a,b) pay q 21(QT) Q(a,b) p y




Global properties of transition probabilities 23

(k—2)/k —— ( a)k)}
+ - / div F d dt> + —
lallz (QT)<( Q(a,b)’ |"“pdy a—a

k 12 ’DP|2 1z
c{enqn o +c€( / IFIpdydt> ( / i dt)
Wk/2(Q ) Q(ab) Qab) P

2/k bh— 2/k
(k—2)/k . k/2 ( a) )}
+ oo / div F d dt) 4+t
lallz (QT)<( Q(mb)’ " pdy a—a

and the estimate for ||q||W§}12 (@) follows for Ce = 5. Theorem 4.1 is proved.

The following result is similar to Theorem 4.1, but is based on The-
orem 5.2 rather than Corollary 3.1. In the sequel, we use the following
assumption.

(H2) F € C*(RN,R"), W, < W, are Lyapunov functions for A and
there exists 1 <w € C*(R") such that

(W* + |Dw|* + |D*w|* + |D*w|* + |D*w|*) < CW,

and

(@* +[Dw[* + | D*w[* + [ D*w[*) (1 + |F[*) + (" + [ Dol + | D*w]*)

X<1+‘DJF’k+‘d1V(DJF)‘k)gCWQa jzla"'7Na

for some k > 2(N+2) and a constant C' > 0. Moreover we suppose that (5.1)
holds for some ¢ € (0, 1).

We still denote by (1, (s the functions defined by (2.1) and associated
with Wy, Wy, respectively.

Remark 5.1. The C* requirement on w is not always necessary. In
order to simplify the presentation, we refrain from specifying the minimal
regularity needed in each statement. The minimal degree of the smoothness

will be clear from the context. Notice also that (H2) implies (H1) and (5.5),
hence all the estimates depending on (H1) and (5.5) are true under (H2).

Theorem 5.3. Assume that assumption (H2) holds. Then there is a
constant C > 0 such that

lw(y)Dp(z,y,1t)|

Dp2 1/k b 1/k
{HD [t m))(/( b)' p' dydt) </ CQ(ﬂf,t)dt>

2/k
+||ka 2)/’;[)) (/ C2$tdt+( 1 k/2/C1ajtdt> }

for all z,y € RN and a; <t < by.
Proof. Asin the proof of Theorem 5.2, let us take ¢ = np. Then we
have w(y)q(y,0) = 0 and
O (wq) — Ap(wq) = w(0:q — Aoq) — 2a(Dw, Dq) — qAow
= —wF - Dq —wqdiv F + wpdyn — 2a(Dw, Dq) — gAjw. (5.6)
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Assumption (H2) easily gives

2/k
lwq div F|[pe/2(gry + [qAowl ez (gr) < CHQHLkoozc?g/Tk (/ Co(, 1) dt)

and
/k

k—2)/k
leopenlssnian < Il e ) - ngmg

To treat the terms containing Dq we proceed as in Theorem 5.2, getting

D
/Q wk/2’F|k/2‘Dq|k/2dydt:/ wk/2’F’k/2‘Dq|(k2)/2|\/g|\/§dydt

Qr

Dal? 1/2 1/2
<ipallt2a ([P aya) ([ wrmrqayar)
Qr q Qr
whence

F||D C||Dqg|/F2/* Dal* 4 e d v
|w|F | Dgll|Ler2@r) < ClDG|| 1 (r) o, g W t Gz, t)dt ) .

The term |Dw - Dg| is estimated in the same way. Then the right-hand
side of (5.6) belongs to L*/?(Qr). Hence, wq € W,?/IQ(QT) and the following
estimate holds:

Hw(-)p(a:, "y ) HWE};(Q(al,bﬂ)

Dp 2 1/k b 1/k
MD%&%ﬂQwQUMQ(/mmw)

2/k
1Pl ) (/ ol 1) dt+( k/g/ G (z,t) dt> } (5.7)

Since k > 2(N + 2), we use Sobolev embedding (see [15, Lemma I1.3.3])
to get the same estimate for the L*™-norm of D(wq) in @Qr. Now we use
Theorem 4.1 with w replaced by @ = (1 + |Dw|?)*¥/2, to obtain

klk 1/k klk 1/k
lgDw]| < (@ry < llgll e lla| Dw|* n;;<QT><:nqn2««QQ>nq HLL>QT

< ClpllS 1/kab))</ Co(, 1) dt+( m/ ACR) dt)

2/k
< Ol 2/kab))</ Glodt+ k/2/§1mtdt) :

Using all the above estimates, one finally gets the result from the inequality

lwDgllL<(@r) < I1D(wq)llL=(@r) + lgDw| 2~ (@r)-

Theorem 5.3 is proved.
We can prove similar decay for D?p and 0,p.



Global properties of transition probabilities 25

Theorem 5.4. Assume that (H2) holds for certain weight functions w
and wy such that w|F| < ¢wy for a constant ¢ > 0. If a;; € CZ(RY), then
there is a constant C' > 0 such that

lw(y)D*p(z, y,t)]

1/k
(k— 2)k |Dp|2 (k—2)/k
< C(UDPIE= i ([, o dvdt) P

« (/ab@(:r,t)dt—k W/:Cl(a:,t) dt>2/k

for all z,y € RN and a; <t < b;.

Proof. Suppose, for simplicity, that a;; = d;;. From the proof of
Theorem 5.3 we know that the function v = wq belongs to sz/lz(QT) and
satisfies v(y,0) = 0 and

v — Av = —wF - Dq — wqdiv F + wpdyn — 2Dw - Dq — qAw. (5.8)
Since F € (2 by the local parabolic regularity it follows that v &

W} /12 1OC(QT) We can, therefore, differentiate (5.8) with respect to y; € R,
j=1,..., N, thus obtaining

((9875 — A) Djv = —(Djw)F - Dg—wD;F - Dg —wF - DD;q — q(D;w) div F
—w(D,q) div F — wqdiv(D,;F') + (D;w)pdyn + w(D;p)0n
—2DDjw-Dq—2Dw - DD;q — (D;jq)Aw — ¢gAD;w. (5.9)

As in the proof of Theorem 5.3 one can see that assumption (H2) easily
implies

[gA(D;w) Lrr2(qry + lwg div(D; F)|| rr2(gr) + [gDjw div F| Lrr2 gy
b 2/k
k—2)/k
<Ol ([ Glena)

and
(Djw)F - Dqllze2(ry + WD F - Dql|per2(gr) + llw div F Djgl| a2 (qn)
+ | DjqAw||Lrr2(qry + [DDjw - Dql|Lrr2(qr
Dal2 1/k b 1/k
< C||Dg ||<L’;(2Q/T’g(/ 1Dal® dt) (/ CZ(ac,t)dt> .
Qr 4 a
Moreover,

b 2/k
[Dspdnleia) < o lpl=en ([ Glotrdt)

(k 2)/k </ |Dq|? dydt)l/k
Qr ¢
x (/ (1) dt)

lw(D;p)0inl Lr/2(qr) <7
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To treat the terms containing the second order derivatives of ¢ we use (H2),
Theorem 5.3, and (5.7) with w replaced by wy, since w|F| < ¢wy. Hence,

|wF - DDjql|Lrr2(qr) < €llwo - DDjql|Lrr2(qr)
&{ 1D Dswolll 201y + | Dswol Dalll ey

+ 1 Dwo| Djall e 2@y + lwodllz2 o }

Dal? 1/k b 1/k
<c{ipa=s ([ P ayar) ([ atonar)

2/k
s ([ s — o [awoa) )

Now, applying (5.7) with w replaced by (1 + |Dw|?)!/2, the same arguments
yield

[ Dw - DDJ'CIHLW(QT)

Dal? 1/k b 1/k
<c{ipaiz, ([ P ayar) " ( [ o ar)

2/k
+||q!Lkm(26)2/Tk</ Co(, t) dt+( m/ Gz, t dt) }

Therefore, the right-hand side of (5.9) belongs to L*/?(Qz). Thus, since
Djv € L*?(Qr) and D;v(y,0) = 0, by the parabolic regularity, D;v €
WE/;(QT) and, by Sobolev embedding [15, Lemma I1.3.3], D;;v = D;;(wq) €
L>(Qr). Moreover, from the above estimates we get

k—2/k |DQ‘2 1/k k—2/k
1Dy (@) = (on) < (||D rLof/QT( /Q : dydt) +llgls2

(/ ol ) s m/ Gzt dt>2/k. (5.10)

Since wD;;q = D;;(wq) — ¢D;jw — DywD;q — D;wD;q, it follows from (H2),
Theorem 4.1 with w replaced by (1 + |D?w|?)¥/2, and Theorem 5.3 with
(1+ |Dw|?)'/? instead of w, that wD;;q € L>(Qr). Finally, the estimate for
D?p follows from Theorem 4.1, Theorem 5.3, and (5.10).

Theorem 5.5. Assume that (H2) holds for certain weight functions w
and wy such that w(|F| + |div F|) < ¢wq for a constant ¢ > 0. If a;; €
CZ(RY), then there is a constant C > 0 such that

|lw(y)Owp(z,y,1)]

/k
k—2/k \Dp] ' k—2/k
< (005w ([, P2 dwde) o+ 1ol

« (/:@(a:,t)dt—k W/:Cl(x,t) dt)z/k
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for all z,y € RN and a; <t < b;.

P roof. Asinthe proof of Theorem 5.4 we assume, for simplicity, that
a;; = 0;;. It follows from Proposition 2.1 that w(y)dp = w(y)Ap — w(y)F -
Dp — w(y) div F' p. Hence, by assumption we have

lw(y)0p(z,y,t)| < |w(y)Ap(z,y,t)| + cwo(y)|Dp(z, y, )| + cwo(y)p(z,y,t).

So the estimate for 9;p follows now from Theorems 4.1, 5.3, and 5.4.

Remark 52. Inconcrete examples, the weight w and the Lyapunov
functions W1, W, are powers or exponentials of powers. The above results
are formulated in a unified way, but the two situations are different. In the
exponential case, in fact, slightly simpler statements are possible: typically,
one has w(y) = exp{7y|y|°} and W;(y) = Wa(y) = exp{d|y|’}, with 3 > 0
and § > v > 0, so only one Lyapunov function is needed.

6. Some applications. We show that, under the main assumptions of
the previous section, the semigroups 7'(-) associated with the transition ker-
nels p are differentiable in C,(RY). We note that if the drift F' is unbounded,
then the associated semigroup is rarely analytic in C,(RY), see [23].

Theorem 6.1. Suppose that a;; € CZ(RY), F € C*(RY) and there
exist constants ¢ > 0, 8 > 2 such that

limsup |z|' P F () - S
| =00 2]
Assume, moreover, that |F(x)| + |DF(x)| + |D*F(z)| < ¢; exp{ca|z|?*~¢} for
some g,c1,cy > 0. Then the inequalities

(i) 0 < p(z,y,t) < czexp{eat™ P>} exp{—y|’},

(ii) | Dp(@,y,t)| < ez exp{eat™¥/ P2} exp{—7ly|°},

(iii) | D?p(z, y,1)| < ez exp{est P~} exp{—7]y|°},

(iv) |0p(z,y,t)| < csexpleat™ ¥} exp{—7ly|’}
hold for suitable cs,cy,y > 0 and for all0 <t < T and z,y € RN.

P roof. From Proposition 2.5 we deduce that the function exp{d|z|*}
is a Lyapunov function for a sufficiently small 6 > 0. We fix w(y) =
exp{7|z|’}, wo(y) = exp{10lz|’}, Wi(y) = Wa(y) = exp{d|z|’} with v <
and kvo < . With these choices, it is easily seen that assumption (H2) holds
for both w and wy so that all the results of the previous sections can be ap-
plied. Moreover, ¢(z,t) < c; exp{(cyt=?/¥=2} for suitable c;,c; > 0 and
every x € RV, ¢t > 0, where ( is the function defined in (2.1) and associated
with W, = W,

Statement (i) follows from Corollary 4.2. For the proof of the other
statements we apply Theorem 5.1 with a = ¢, b = 2¢t. Estimating the
integral of |F'|?p through ¢ and using (i) for that of plnp we obtain

2t _D 2
/ / | p ik A )‘ dy ds < csexp{cst P/P2}
RN w Y, S
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for x € RM, t > 0, and suitable positive constants cs,cs. Inserting this
estimate in Theorem 5.2 and using (i) and Sobolev embedding we obtain

|Dp(z,y, s)| < ¢z exp{cat %72}

for z,y € RN, t < s < 2t. Finally, (ii)—(iv) follow using these estimates in
Theorems 5.3-5.5, respectively.

Remark 6.1. Observe that the assumption a;; € CZ(R") is not
needed for (i) and (ii).

Remark 6.2. Let us point out a variant of Theorem 6.1. We as-
sume that a;; € CZ(RY), F € C*(R") and there exist constants ¢ > 0,

B > 2 such that

limsup |z|' P F(z) - ha < —c.
Assume, moreover, that |F(z)|+|DF(x)|+|D*F(z)| < ¢;(1+|z]*)™ for some
~1,¢1, ¢ > 0. Then, for sufficiently large =, the following estimate holds:

p(z,y,t) + |Dp(z,y,y)| + | D*p(z,y, t)| + [0ip(z,y, )| < Ct™7 (1 + |y|*) ™,

for z,y € RY, 0 < t < 1 and with a suitable o depending on ~v;,~,. In fact,
the estimate for p is contained in Corollary 4.3, where the dependence of o
on 71,72 is explicitly stated. The corresponding bounds for the derivatives
of p can be obtained as in Theorem 6.1. We refrain from stating the explicit
dependence of ¢ in the general case since it does not seem to be optimal.

Finally, let us show that the transition semigroup 7'(-) is differentiable
in spaces of continuous functions, under the assumption of Theorem 6.1. We
observe that in the case 8 = 2 the semigroup need not to be differentiable as
the example of the Ornstein—Uhlenbeck operator shows, see [18]. Moreover,
even when [ > 2 the semigroup is not, in general, analytic, see [23]. Finally,
we point out that our methods allow one to prove the differentiability of the
semigroup without requiring that the drift F' is a gradient.

Theorem 6.2. Under the assumptions of Theorem 6.1, the transition
semigroup T(-) is differentiable on Cy(RYN) for t > 0.

Proof. Let us fix 0 < a < T. By Theorem 6.1 we know that
0p(z,y,t)| < cirexp{—cs|y|’} for every a < t < T, z,y € RY. Since
p(,y,-) € Cl+a/2’2+a(RN x (0,00)), for every f € C,(RY) and t > 0 the

loc
function

T(0f¢) = [ ol (w)dy

is differentiable with respect to the norm of C,(R") and

%T(W(') :/RN 0ip(,y, 1) f(y) dy.

Theorem 6.2 is proved.
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As an example, we obtain that the operator A = A — z|z|" - D, r > 0,
generates a differentiable semigroup in Cy(R). The same result is proved also
in [23, Proposition 4.4], where the proof was based on results on intrinsic
ultracontractivity of the Schrodinger operator proved in [9] and, therefore,
used the gradient structure of the drift.

7. Appendix. In this appendix we present a simple, purely analytical,
proof of the embeddings of the spaces #%!(Qr), due to Krylov, see [13].
Krylov proves the above embeddings for the more general case of stochastic
parabolic Sobolev spaces. We also prove by the same method an embedding
for the spaces ¥*(Qr) which we used in Section 3. Finally, we prove an
estimate for the L>-norm of solutions of certain parabolic problems.

We recall that #%'(Qr) consists of all functions v € W,"°(Qr) with
o € (W (Qr)) and that, for k > 2, #*(Qr) is the space of all functions
u € W,"°(Qr) such that there exists C' > 0 for which

‘ / u0y¢ dx dt

< O(I18llzva-2n) + IDrr0-van))

for every ¢ € C>'(Qr). We denote by ||0;ul|k/2,k:0, the best constant C such
that the above estimate holds. Note that if a smooth function belongs to
HH(Qr) or to ¥*(Qr), then the estimate for d;u implies that u vanishes
at times 0 and 7.

Lemma 7.1. There exist linear, continuous extension operators
Ey: Y Qr) — AFHRNTY) and Ey: VF(Qr) — VHRNTL).

P roof. The proof is easily achieved using standard reflection argu-
ments with respect to the variable .

Lemma 7.2. The restrictions of functions in C°*(RN*) to Qr are
dense in A (Qr) and in V*(Qr).

Proof. If u € #%(Qr) we consider v = Fju € 2% (RN*!). By
standard arguments involving convolutions and multiplications by cut-off

functions, we may approximate v with smooth functions with compact sup-
port in the norm of %1 (RN*!), hence u. The proof for ¥*(Qr) is similar.

Theorem 7.1. (i) If 1 < k < N + 2, then % (Qr) is continuously
embedded in L™ (Qr) for 1/r =1/k —1/(N + 2).

(ii) If k = N + 2, then 5% (Qr) is continuously embedded in L"(Qr)
for N +2 <r < oo.

(iii) If k > N +2, then %1 (Qr) is continuously embedded in Cy(Q7).

Proof By Lemma 7.2 it is sufficient to establish the estimate

lullLr(@r) < Cllull v @r)

for every u € C°(RN ™), with C independent of u, where r is as in (i), (ii)
or r = oo in case (iii).
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We consider the fundamental solution G of the operator 9, — A in RV*1,

We have )

Glat) = { (47t)~N/2 exp {—4”3@]2}, t>0,

0, t<0.

Let u € C°(RNT1), ¢ € C°(Qr) and consider ¢ = Gx1). The function ¢ be-
longs to C?(RN*1) and satisfies 9,¢ — A¢ = 9, see, e.g., [11, Theorem 8.4.2].
Since 9 has support in RY x [0, T, then Gxv = Gr 1, where Gr = Gx(o.17-
By a straightforward computation one sees that Gy € L*(RV*!) for 1 < s <
(N +2)/N and DGy € L*(RM*!) for 1 < s < (N +2)/(N +1). Young’s
inequality then yields ¢[00,y < c1ll¥llr1(@r) for s < (N +2)/(N +1).
Since k > N + 2, it follows that &' < (N +2)/(N + 1) and we get

‘/QTm/)dxdt’ = /QTu((?gb—A(b)dacdt’ =

< allullzri@nllelwioqn < esllullers@n ¥l @n-

/ (4 + Du - Do) da dt

Qr

This proves (iii).

In order to prove (ii) we fix N +2 < r < oo and choose 1 < s <
(N +2)/(N +1) such that 1/k' = 1/s + 1/r" — 1. Young’s inequality then
yields ||¢”W]1;O(QT) S Cl“leLr’(QT)a hence

)/QT w dz dt

and (ii) is proved.

To prove (i) we use the estimate ||¢HWT2/1(QT) < o[l or (see [15,
Theorem 9.2.3]) and the embedding W>'(Qr) C W, °(Qr) (see [15,
Lemma II.3.3]) to conclude as before. Theorem 7.1 is proved.

A closer look at the above proof shows an embedding of the space
¥*(Qr), used in Section 4.

Theorem 7.2. If k > N + 2, then ¥*(Qr) is continuously embedded
in Co(Qr). Moreover, ||ul|L=(qr) < C([|1Dullx@r) + 0tellk/2.1:0r)-

Proof. Asabove we may assume that u € C2°(RN*1). Choose ¢, ¢
as in the above theorem. Then

‘/Tmpdxdt‘ _ /Tu(atqs—m)dxdt) _ ‘/T(uﬁtqb—l—Du-Dqﬁ)dazdt‘

< cllullserr @Il @

< (IDulls@n + 10tlhzier ) (IDloerovian + @lls e

< 0(IDullsan + I0tlhzcr ) ¥l

by the above estimates for ¢, since k/(k—1) < (N+2)/(N+1) and k/(k—2) <
(N 4 2)/N. Theorem 7.2 is proved.
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We need the following estimate of the sup-norm of solution of parabolic
problems.

Theorem 7.3. Letk > N +2, v € L*(Qr), w € L*?(Qr) and assume
that u € L*(Qr) satisfies

/ u(0:p + Ao@) dx dt = / (v- D¢+ wo) dx dt (7.1)
Qr

Qr

for every ¢ € C*Y(Qr). Then u € ¥*(Qr) and

[ull@r) < Cillullyr@r < Calllvlik@n + wllLrez@n),

where Cy, Cy depend on N, T, k, and the C}-norm of a;;.
Proof. Step 1. First we show that

[ullx@ry < CUlr@r) + lwllLrr2(gq))- (7.2)

For ¢ € W' (Qr), Sobolev embedding gives

1Pl zrre—2@r) < CllEllwz @y (7.3)

since k > N+2and 1 -1/k—-2/(N+2) <1-2/k<1—-1/k. As a
consequence, since u € L*(Qr), by approximation, (7.1) holds if ¢ belongs
to W2 (Qr). Let us fix ¢ € C>°(Qr). Using [15, Theorem 9.2.3] we choose
now m € W' (Qr) such that

8t¢ + A()Qs = 7,[) in QT7
é(z,T) =0, r € RV,

We have also [|¢]|yy21(q,) < CllY|l1+ (@), Where C depends on k, T', and the
k!

coefficients (a;;). Therefore, inserting this ¢ in (7.1) and using (7.3), we find
that

w dx dit

’ . < C([oller@ry + lwllprrz@e) Yl @)
T

and (7.2) follows.
Step 2. We have

| w0+ ag)dwit= | (g Do+ ws)dod,

T T

where A, =37, - a;;D;; and g; = v; + uDi(Zévzl a;j), and therefore

‘/ w(By+ A1) da di

< C[(ullze@r + Il x@n) | DYl @r)

+ lwll 22 Bl rvonon |
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Replacing ¢ by its difference quotients with respect to the variable z we
obtain as in Lemma 3.1

< C|(lullex@n + Iollr@o)lélhwz:, om

k/(k—1)

’ / (0,6 + Ard) da dt

+ el /20 | DBl s o

By Sobolev embedding || D¢||r:(q,) < C”(ZSHW@L@, (@n) ifl/s=1-1/k —

1/(N +2). Since k/(k —1) < k/(k —2) < s because & > N + 2, we can
estimate the L¥/(*=2)-norm of D¢ with its W} ,_, -norm thus obtaining

’ / Thu(at@ + A1¢) dx dt
Qr

< C(ullzx@n + Illzx@r) + w0l n)
<\ blwzs, | @

We approximate ¢ in W:}%k,l)(QT) with a sequence of functions ¢, €
CYH2(Qr). Since u € L¥(Qr), writing the above inequality for ¢,, and letting
n — oo we see that it holds for ¢.

Acting as above we now choose ¢ € W' (Qr) such that

0p + A1 = |mhq|* ?mu,  in Qr,
¢(z,T) = 0, r € RV,

and ||¢HW;/,1(QT) < Olllmnul* M pw @py- This yields u € W (Qr) and

||Du||L’€(QT) < C(HU||L’°(QT) + HUHLk(QT) + ||w||L’“/2(QT))' Now we treat the
time derivative. We have

/uat¢dxdt=/ <ZaijDiuDj¢+v-D¢+w¢>d$dt

0]

and hence, using the above estimates,

‘ / b, da dt

< C[(lullzrian + 1llzr@r) + lllxrz@m) 1Dl o gm)
+ 1wl o2 161l 2021y |

Then u € ¥*(Qr) and hence Theorem 7.2 yields u € L>(Qr) and

Julli o) < C(IDulr@n) + [Biallejsien )

< O(lullzxcon + Wolzxcon + lellsran ) < C(Iollzxcan + lellsran )

(we have used (7.2) in the last inequality). Theorem 7.3 is proved.
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