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ТЕОРИЯ ВЕРОЯТНОСТЕЙ
Том 54 И ЕЕ ПРИМЕНЕНИЯ Выпу с к 1

2009
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GLOBAL PROPERTIES OF TRANSITION PROBABILITIES
OF SINGULAR DIFFUSIONS1)

Доказываются глобальная регулярность в соболевских про-
странствах и поточечные верхние оценки для переходных плот-
ностей, ассоциированных с дифференциальными операторами вто-
рого порядка в RN с неограниченным сносом. В качестве при-
менения мы получаем достаточные условия дифференцируемости
ассоциированной переходной полугруппы на пространстве непре-
рывных ограниченных функций на RN .

Ключевые слова и фразы: переходные полугруппы, переходные
вероятности, регулярность решений параболических уравнений.

1. Introduction. Given a second order elliptic partial differential op-
erator with real coefficients

A =
N∑

i,j=1

Di(aijDj) +
N∑

i=1

FiDi = A0 + F ∙D, (1.1)

where A0 =
∑N
i,j=1Di(aijDj), we consider the parabolic problem
{
∂tu(x, t) = Au(x, t), x ∈ RN , t > 0,

u(x, 0) = f(x), x ∈ RN ,
(1.2)

where f ∈ Cb(RN).
We assume the following conditions on the coefficients of A which will

be kept in the whole paper without further mentioning.
(H) aij = aji, Fi: R

N → R, with aij ∈ C1+α(RN), Fi ∈ Cαloc(R
N) for

some 0 < α < 1 and

λ|ξ|2 6
N∑

i,j=1

aij(x)ξiξj 6 Λ|ξ|
2
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for every x, ξ ∈ RN and suitable 0 < λ 6 Λ.
Notice that the drift F = (F1, . . . , FN) is not assumed to be bounded

in RN .
Problem (1.2) always has a bounded solution but, in general, there

is no uniqueness. However, if f is nonnegative, it is not difficult to show
that (1.2) has a minimal solution u among all nonnegative solutions. Taking
such a solution u, one constructs a semigroup of positive contractions T (∙)
on Cb(R

N) such that

u(x, t) = T (t)f(x), t > 0, x ∈ RN ,

solves (1.2). Furthermore, the semigroup can be represented in the form

T (t)f(x) =

∫

RN
p(x, y, t)f(y) dy, t > 0, x ∈ RN ,

for f ∈ Cb(RN). Here p is a positive function and for almost every y ∈ RN ,
it belongs to C

2+α,1+α/2
loc (RN × (0,∞)) as a function of (x, t) and solves the

equation ∂tp = Ap, t > 0. We refer to Section 2 and [21] for a review of
these results as well as for conditions ensuring uniqueness for (1.2).
Now, we fix x ∈ RN and consider p as a function of (y, t). Then p

satisfies
∂tp(x, y, t) = A

∗
yp(x, y, t), t > 0, (1.3)

where A∗y denotes the adjoint operator of A, which acts on the variable y
(see Lemma 2.1). The great amount of work devoted to these equations
(see, e.g., [1]–[7], [12]–[14], [19], [20] and the references there) witnesses the
interest towards global properties of solutions. Beside the effort to extend
as far as possible the classical results on uniformly elliptic and parabolic
equations, solution measures are important in stochastics, being stationary
distributions in the elliptic case and transition probabilities in the parabolic
one.

For global boundedness and Sobolev regularity, as well as Harnack in-
equalities and pointwise estimates in the elliptic case, we refer to [19] and [4].
Pointwise bounds on kernels of Schrödinger operators, which can be treated
with methods similar to those of the present paper, are proved in [20].
The aim of this paper is to study global regularity properties and point-

wise bounds of the transition density p as a function of (y, t) ∈ RN × (a, T )
for 0 < a < T .

We prove that p(x, ∙, ∙) belongs to W 1,0
k (R

N × (a, T )) provided that
∫ T

a0

∫

RN
|F (y)|kp(x, y, t) dy dt <∞ ∀k > 1

for fixed x ∈ RN and 0 < a0 < a. This generalizes in some sense
Theorem 4.1 in [3]. Under the assumption that certain Lyapunov func-
tions (exponentials or powers) are integrable with respect to p(x, y, t)dy for
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(x, t) ∈ RN × (a, T ), pointwise upper bounds for p are obtained. If in ad-
dition F ∈W 1

∞,loc(R
N ,RN) and |F |kp, | divF |k/2p ∈ L1(RN × (a0, T )) with

k > 2(N +2), then p ∈W 2,1
k (R

N × (a, T )) and we get uniform upper bounds
on |Dyp|. This is the case if F and divF satisfy some growth conditions of
exponential or power type. Analogously, in the case where F and its deriva-
tives up to the second order satisfy growth conditions of exponential type,
upper bounds are also obtained for |Dyyp| and |∂tp|. Notice also that, in some
situations, the semigroup (T (t))t>0 is compact on Cb(R

N), and hence there
is no semigroup in any space Lp(RN) (see [22, Remark 4.3]) and C0(R

N) is
not T (t)-invariant, hence p(x, y, t) 6→ 0 as |x| → ∞. This means that there
is no hope to obtain any decay of p with respect to x.

Finally, if the inward component of the drift term F is of power type,
then all upper bounds obtained before are independent of x ∈ RN and as a
consequence we deduce that the transition semigroup T (∙) is differentiable
on Cb(R

N) for t > 0.

Problem (1.3) (even with time-dependent and less regular coefficients)
has been considered in [6], [7], where the initial datum is a L1-function μ.
In [6] and [7] the authors prove regularity and pointwise estimates for the
solution with respect to the space variables under suitable conditions on
μ. Lower bounds are obtained in [7] from Harnack’s inequality. Moreover,
a version of our Theorem 5.1 is proved in [6, Theorem 2.1] assuming that
the function μ has finite entropy, see also [7, Corollary 3.5]. Our estimates
are obtained directly for the fundamental solution (i.e., when μ is the Dirac
measure) and have an explicit behavior with respect to the time variable.
Bounds for any initial datum μ can be obtained from those of the funda-
mental solution after integration, but they explode as t→ 0, whereas those
in [6], which exploit some smoothness of μ, do not. We refer the reader
also to [24], where other bounds on the fundamental solutions are proved,
in particular situations, using Lyapunov functions which depend also on the
time variable.

Most of our results rely only on the fact that the probability density
p solves a parabolic equation and that the drift F has some integrability
properties with respect to the measure p(x, ∙, ∙) dy dt. This is the case for all
the results in Section 4, where the x variable plays the role of a parameter
and could be omitted. On the other hand, pointwise estimates depend on
the use of Lyapunov functions and therefore in our approach the fact that
p is a transition function becomes essential, see Proposition 2.3. Maybe,
proving the same results in a different way could lead to similar estimates
in wider generality.

Notation. BR(x) denotes the open ball of R
N of radius R and centre

x. If x = 0 we simply write BR. For 0 6 a < b, we write Q(a, b) for
RN × (a, b) and QT for Q(0, T ). We write C = C(a1, . . . , an) to point
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out that the constant C depends on the quantities a1, . . . , an. To simplify
the notation, we understand the dependence on the dimension N and on
quantities determined by the matrix (aij) such as the ellipticity constant or
the modulus of continuity of its entries.
If u: RN ×J → R, where J ⊂ [0,∞[ is an interval, we use the following

notation:

∂tu =
∂u

∂t
, Diu =

∂u

∂xi
, Diju = DiDju

Du = (D1u, . . . ,DNu), D2u = (Diju),

|Du|2 =
N∑

j=1

|Dju|
2, |D2u|2 =

N∑

i,j=1

|Diju|
2.

Introduce the notation for function spaces. Let Cjb (R
N) be a space of j times

differentiable functions in RN with bounded derivatives up to the order j;
C∞c (R

N) be a space of test functions; Cα(RN) denote a space of all bounded
and α-Hölder continuous functions on RN . We also introduce the space

C2,1c (Q(a, b)) = {φ ∈ C
2,1(Q(a, b)): suppφ ⊂ BR × [a, b] for some R > 0}.

Notice that we do not require that u ∈ C2,1c (Q(a, b)) vanishes at t = a, t = b.
For 1 6 k 6 ∞ and j ∈ N, denote by W j

k (R
N) the classical Sobolev

space of all Lk-functions having weak derivatives in Lk(RN) up to the order
j. Its usual norm is denoted by ‖ ∙ ‖j,k and by ‖ ∙ ‖k for j = 0.
Let us now define some spaces of functions of two variables following

basically the notation of [15]: C0(Q(a, b)) is the Banach space of continuous
functions u defined in Q(a, b) such that lim|x|→∞ u(x, t) = 0 uniformly with
respect to t ∈ [a, b], C2,1(Q(a, b)) is a space of all bounded functions u
such that ∂tu, Du, and Diju are bounded and continuous in Q(a, b). For
0 < α 6 1 we denote by C2+α,1+α/2(Q(a, b)) a space of all bounded function u
such that ∂tu, Du, and Diju are bounded and α-Hölder continuous in Q(a, b)
with respect to the parabolic distance d((x, t), (y, s)) := |x − y| + |t − s|1/2.
Local Hölder spaces are defined, as usual, requiring that the Hölder condition
holds in every compact subset.

We shall also use parabolic Sobolev spaces. We denote by W 2,1
k (Q(a, b))

a space of functions u ∈ Lk(Q(a, b)) having weak space derivatives Dαxu ∈
Lk(Q(a, b)) for |α| 6 2 and weak time derivative ∂tu ∈ Lk(Q(a, b)) equipped
with the norm

‖u‖W 2,1
k
(Q(a,b)) := ‖u‖Lk(Q(a,b)) + ‖∂tu‖Lk(Q(a,b)) +

∑

16|α|62

‖Dαu‖Lk(Q(a,b)).

Let H k,1(QT ) denote a space of all functions u ∈ W 1,0
k (QT ) with ∂tu ∈

(W 1,0
k′ (QT ))

′, the dual space of W 1,0
k′ (QT ), endowed with the norm

‖u‖H k,1(QT ) := ‖∂tu‖(W 1,0

k′
(QT ))′

+ ‖u‖W 1,0
k
(QT )

,
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where 1/k + 1/k′ = 1. Finally, for k > 2, let V k(QT ) be a space of all
functions u ∈W 1,0

k (QT ) such that there exists C > 0 for which

∣
∣
∣
∣

∫

QT

u∂tφdx dt

∣
∣
∣
∣ 6 C(‖φ‖Lk/(k−2)(QT ) + ‖Dφ‖Lk/(k−1)(QT ))

for every φ ∈ C2,1c (Q(a, b)). Notice that k/(k − 1) = k′, k/(k − 2) = (k/2)′.
V k(QT ) is a Banach space when endowed with the norm

‖u‖V k(QT ) = ‖u‖W 1,0
k
(QT )
+ ‖∂tu‖k/2,k;QT ,

where ‖∂tu‖k/2,k;QT is the best constant C such that the above estimate
holds.

In the paper the transition density p will be considered as a function of
(y, t) for arbitrary but fixed x ∈ RN . The notation ‖p‖ therefore stands for
any norm of p as function of (y, t), for a fixed x. Moreover, all the differential
operators, unless otherwise specified, act on the variable y.

2. Local regularity and integrability of transition densities. As
a first step, we construct a semigroup in Cb(R

N) generated by a suitable
realization of A. Since the domain will not be dense in Cb(R

N), we cannot
use the Hille–Yosida theorem. Instead we follow a classical approximation
method based on Schauder’s estimates. We only sketch the procedure since
it is presented in detail in [21].

Let us fix a ball B% of centre 0 and radius %. Since A is uniformly elliptic
on this ball, the operator A, endowed with the domain

D(A) =

{

u ∈
⋂

p>1

W 2
p (B%): Au ∈ C(B%), u|∂B% = 0

}

,

generates a semigroup (T%(t))t>0 on Cb(B%), see, e.g., [17, Section 3.1.5]. As
a consequence, for every f ∈ Cb(RN) there exists a unique function u% = T%f
satisfying 





∂tu% = Au%, x ∈ B%, t > 0,

u%(x, t) = 0, x ∈ ∂B%, t > 0,

u%(x, 0) = f(x), x ∈ B%.

The maximum principle yields ‖u%‖∞ 6 ‖f‖∞ and u%1(x, t) 6 u%2(x, t) if
x ∈ B% and % < %1 < %2, provided that f > 0. Defining

T (t)f(x) = lim
%→∞

u%(x, t)

one constructs a semigroup of positive contractions in Cb(R
N), named the

minimal semigroup associated with A, which satisfies the following proper-
ties.
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Theorem 2.1. For f ∈ Cb(R
N), let u(x, t) = T (t)f(x), for t > 0,

x ∈ RN . Then
(i) u belongs to the space C

2+α,1+α/2
loc (RN × (0,∞)) and satisfies the

equation

∂tu(x, t) =
N∑

i,j=1

Di(aij(x)Dju)(x, t) +
N∑

i=1

Fi(x)Diu(x, t);

moreover, if f ∈ C2c (R
N), then ∂tu(x, t) = T (t)Af(x);

(ii) T (t)f(x)→ f(x) as t→ 0 uniformly on compact sets of RN ;
(iii) if (gn) is a bounded sequence in Cb(R

N) and gn(x)→ g(x) for every
x ∈ RN , with g ∈ Cb(RN), then T (t)gn(x)→ T (t)g(x) in C2,1(RN×(0,∞)).

In [21] it is also proved that the semigroup is given by a transition
density p(x, y, t), that is,

T (t)f(x) =

∫

RN
p(x, y, t)f(y) dy.

Local regularity properties of the transition densities with respect to the
variables (y, t) are known even under conditions weaker than our hypothesis
(H), see [3]. We combine the results of [3] with the Schauder estimates to
obtain regularity of p with respect to all the variables (x, y, t).

Proposition 2.1. Under assumption (H) the kernel p = p(x, y, t) is a
positive continuous function in RN×RN×(0,∞) which satisfies the following
properties.

(i) For every x ∈ RN , 1 < s < ∞, the function p(x, ∙, ∙) belongs to
H s,1
loc (R

N × (0,∞)). In particular, p,Dyp ∈ Lsloc(R
N × (0,∞)) and p(x, ∙, ∙)

is continuous.

(ii) For every y ∈ RN the function p(∙, y, ∙) belongs to C2+α,1+α/2loc (RN ×
(0,∞)) and solves the equation ∂tp = Axp, t > 0. Moreover,

sup
|y|6R

‖p(∙, y, ∙)‖C2+α,1+α/2(BR×[ε,T ]) <∞

for every 0 < ε < T and R > 0.

(iii) If, in addition, F ∈ C1(RN), then p(x, ∙, ∙) ∈ W 2,1
s,loc(QT ) for every

x ∈ RN , 1 < s <∞, and satisfies the equation ∂tp−A∗yp = 0, where

A∗ = A0 − F ∙D − divF

is the formal adjoint of A.

P r o o f. Assertion (i) is stated in [3, Corollary 3.9].

Let us prove (ii). Since p(x, ∙, ∙) is continuous in (y, t) for every fixed x,
we have p(x, y, t) <∞ for every t > 0 and x, y ∈ RN . Under this condition,
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the proof of [21, Theorem 4.4] ensures that p(∙, y, ∙) ∈ C
2+α,1+α/2
loc (RN ×

(0,∞)) for every y ∈ RN and that p solves ∂tp = Ap.
Let us fix y ∈ RN , 0 < ε < τ , and t1 > τ . If |y| 6 R, then the parabolic

Harnack inequality (see, e.g., [16, Chap. VII]) yields

sup
ε6t6τ, x∈B2R

p(x, y, t) 6 Cp(0, y, t1) 6 C sup
|y|6R

p(0, y, t1) =M

for a suitable M > 0. By the interior Schauder estimates (see, e.g., [11,
Theorem 8.1.1]) we deduce that

sup
|y|6R

‖p(∙, y, ∙)‖C2+α,1+α/2(BR×[ε,τ ])

6 C
(
sup
|y|6R

‖∂tp(∙, y, ∙)−Axp(∙, y, ∙)‖Cα,α/2(B2R×[ε/2,τ ]) +M
)
= CM <∞.

Finally, we prove that p is continuous in RN ×RN × (0,∞). If (xn, yn, tn)→
(x0, y0, t0) with t0 > 0, then

|p(xn, yn, tn)− p(x0, y0, t0)| 6 |p(xn, yn, tn)− p(x0, yn, t0)|

+ |p(x0, yn, t0)− p(x0, y0, t0)|.

The last term tends to zero by the continuity of p(x0, ∙, t0) and the first too,
since, by the above estimate, Dxp is uniformly bounded in a neighborhood
of (x0, y0, t0).

Assertion (iii) follows from standard local parabolic regularity.

Proposition 2.1 is proved.

The minimal semigroup selects one among all bounded solutions of equa-
tion (1.2), actually the minimal among all positive solutions, when f is pos-
itive. The uniqueness of the bounded solution does not hold, in general but
it is ensured by the existence of a Lyapunov function, that is, of a C2+αloc -
function W : RN → [0,∞) such that lim|x|→∞W (x) = +∞ and AW 6 λW

for some λ > 0. Lyapunov functions are easily found imposing suitable con-
ditions on the coefficients of A. For instance, W (x) = |x|2 is a Lyapunov
function for A provided that

∑
i aii(x) + F (x) ∙ x 6 C|x|

2 for some C > 0.

Proposition 2.2. Assume that A has a Lyapunov function W and let
u, v ∈ Cb(RN × [0, T ]) ∩ C2,1(RN × (0, T ]) solve (1.2). Then u = v.

P r o o f. It is sufficient to show that if such a function u solves (1.2)
with f > 0, then u > 0. Define vε = e−λtu+ εW , where ε > 0 and λ is such
that AW 6 λW . Then vε has a minimum point (x0, t0) ∈ RN × [0, T ]. If
vε(x0, t0) < 0, then t0 > 0, since f > 0, and hence ∂tvε(x0, t0) 6 0. Since
Dvε(x0, t0) = 0 and

∑
i,j aijDijvε(x0, t0) > 0, we have also (A−λ)vε(x0, t0) >

0 and this contradicts the equation ∂tvε − (A − λ)vε > 0. Therefore, vε > 0
and, letting ε→ 0, u > 0. Proposition 2.2 is proved.
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Now we turn our attention to integrability properties of p and show how
they can be deduced from the existence of suitable Lyapunov functions.

The integrability of Lyapunov functions with respect to the measures
p(x, y, t) dy is given by the following result, which is proved in [22], see
also [1].

Proposition 2.3. A Lyapunov function W is integrable with respect to
the measures p(x, y, t) dy. Setting

ζ(x, t) =

∫

RN
p(x, y, t)W (y) dy, (2.1)

the inequality
ζ(x, t) 6 eλtW (x)

holds. Moreover, |AW | is integrable with respect to p(x, y, t) dy, ζ ∈
C2,1(RN × (0,∞)) ∩ C(RN × [0,∞)), ζ(x, 0) =W (x), and

∂tζ(x, t) 6

∫

RN
p(x, y, t)AW (y) dy.

Assuming that AW tends to −∞ faster than −W one obtains, by Propo-
sition 2.3, that the function ζ in (2.1) is bounded with respect to the space
variables, see [20, Proposition 2.6]. We repeat here the proof for reader’s
convenience.

Proposition 2.4. Assume that the Lyapunov function W satisfies the
inequality AW 6 −g(W ), where g: [0,∞)→ R is a convex function such that
lims→+∞ g(s) = +∞ and 1/g is integrable in a neighborhood of +∞. Then
for every a > 0 the function ζ defined in (2.1) is bounded in RN × [a,∞).
Moreover, the semigroup (T (t))t>0 is compact in Cb(R

N).

P r o o f. Observe that, since g is convex, we have
∫

RN
p(x, y, t)g(W (y)) dy > g(ζ(x, t)).

Then, from Proposition 2.3 we deduce

∂tζ(x, t) 6

∫

RN
p(x, y, t)AW (y) dy 6 −

∫

RN
p(x, y, t)g(W (y)) dy 6 −g(ζ(x, t))

and, therefore, ζ(x, t) 6 z(x, t), where z is the solution of the ordinary
Cauchy problem {

z′ = −g(z),

z(x, 0) =W (x).

Let ` denote the greatest zero of g. Then z(x, t) 6 ` if W (x) 6 `. On the
other hand, if W (x) > `, then z is decreasing and satisfies

t =

∫ W (x)

z(x,t)

ds

g(s)
6

∫ ∞

z(x,t)

ds

g(s)
. (2.2)
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This inequality easily yields, for every a > 0, a constant C(a) such that
z(x, t) 6 C(a) for every t > a and x ∈ RN . The compactness of the semi-
group is proved in [22, Theorem 3.10]. Proposition 2.4 is proved.
Let us state a condition under which certain exponentials are Lyapunov

functions. Propositions 2.5, 2.6 will be used to check the integrability of |F |k

with respect to p.

Proposition 2.5. Let Λ be the maximum eigenvalue of (aij) as in (H).
Assume that

lim sup
|x|→∞

|x|1−βF (x) ∙
x

|x|
6 −c, (2.3)

for some c > 0, β > 1. Then W (x) = exp{δ|x|β} is a Lyapunov function for
δ < (βΛ)−1c. Moreover, if β > 2, there exist positive constants c1, c2 such
that

ζ(x, t) 6 c1 exp (c2t
−β/(β−2)) (2.4)

for x ∈ RN , t > 0.

P r o o f. Let W (x) = exp{δ|x|β} and set Gi = Fi +
∑
j Djaij . We

obtain, by a straightforward computation,

AW (x) = δβ|x|β−1eδ|x|
β

(
1

|x|

∑

i

aii(x) +
β − 2
|x|3

∑

i,j

aij(x)xixj

+ δβ|x|β−3
∑

i,j

aij(x)xixj +G ∙
x

|x|

)

6 C1|x|
β−1eδ|x|

β

(1 + (δβΛ− c)|x|β−1) 6 −C2|x|
2β−2eδ|x|

β

6 0

for |x| large. This shows that W is a Lyapunov function. Finally, if β > 2
it follows that AW 6 −g(W ) with g(s) = C3s(ln s)

2−2/β
+ − C4, for suitable

C3, C4 > 0. Then Proposition 2.4 yields the boundedness of ζ(∙, t). To
obtain (2.4) we recall that ζ 6 z, where z satisfies (2.2). If ` denotes the zero
of g and z(x, t) 6 2` we have simply to choose a suitable c1. If z(x, t) > 2`,
then

t 6

∫ ∞

z

ds

g(s)
6 C5

∫ ∞

z

ds

s(ln s)2−2/β
6 C6(ln z)

2/β−1

and (2.4) follows. Proposition 2.5 is proved.
The right-hand side of (2.4) becomes very large as t → 0. In order to

have a milder behavior we investigate when powers are Lyapunov functions.

Proposition 2.6. Assume that

lim sup
|x|→∞

|x|1−βF (x) ∙
x

|x|
< 0, (2.5)

for some β > 2. Then W (x) = (1 + |x|2)α is a Lyapunov function for every
α > 0 and there exists a positive constant c such that

ζ(x, t) 6 ct−2α/(β−2) (2.6)
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for x ∈ RN , 0 < t 6 1.

P r o o f. We have, with the notation of Proposition 2.5,

AW (x) = (1 + |x|2)α
(
2α

1 + |x|2
∑

i

aii(x) +
4α(α− 1)
(1 + |x|2)2

∑

i,j

aij(x)xixj

+
2α

1 + |x|2
G ∙ x

)

6 −C1(1 + |x|
2)α+(β−2)/2 = −C1W

γ

for |x| large and with γ = 1 + (β − 2)/(2α) > 1. This shows that AW 6

−g(W ) with g(s) = C2sγ−C3 for suitable C2, C3 > 0. Acting as in the proof
of (2.4) one can show (2.6), the only difference is that the function t−2α/(β−2)

goes to 0 as t → +∞, and then the estimate is not true, in general, for all
t > 0. Proposition 2.6 is proved.

R e m a r k 2.1. Conditions (2.3) and (2.5) are assumptions on the
radial component of F . Of course, changing x/|x| to (x− x0)/|x− x0| leads
to new conditions that, although not equivalent to (2.3), (2.5), yield similar
conclusions.

Finally we clarify in which sense the identity ∂tp = A
∗
yp is satisfied.

Lemma 2.1. Let 0 6 a < b and ϕ ∈ C2,1c (Q(a, b)). Then
∫

Q(a,b)

(∂tϕ(y, t) +Aϕ(y, t))p(x, y, t) dy dt

=

∫

RN
(p(x, y, b)ϕ(y, b)− p(x, y, a)ϕ(y, a)) dy. (2.7)

P r o o f. If ψ ∈ C2c (R
N), then ∂tT (t)ψ = T (t)Aψ, see Theorem 2.1(i).

If ϕ ∈ C2,1c (Q(a, b)), then ∂t(T (t)ϕ(∙, t)) = T (t)∂tϕ(∙, t) + T (t)Aϕ(∙, t).
Integrating this identity over [a, b] and writing T (t) in terms of the kernel p,
we obtain (2.7). Lemma 2.1 is proved.

3. Sobolev regularity: Preliminary estimates. In this section we
fix T > 0 and consider p as a function of (y, t) ∈ RN × (0, T ) for arbitrary,
but fixed, x ∈ RN . Further, fix 0 < a0 < a < b < b0 6 T and assume for
definiteness b0 − b > a− a0. Setting

Γ(k, x, a0, b0) :=

(∫

Q(a0,b0)

|F (y)|kp(x, y, t) dy dt
)1/k

, (3.1)

we show global regularity results for p with respect to the variables (y, t) as-
suming Γ(k, x, a0, b0) <∞ for suitable k > 1. Observe that if Γ(k, x, a0, b0) <
∞, then Γ(h, x, a0, b0) <∞ for all h 6 k. We also recall that this assumption
can be verified, in many concrete cases, using Propositions 2.5, 2.6.

In the following proposition we show that p ∈ Lr(Q(a0, b0)) for small
values of r > 1.
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Proposition 3.1. If Γ(1, x, a0, b0) < ∞, then p ∈ Lr(Q(a0, b0)) for all
r ∈ [1, (N + 2)/(N + 1)) and

‖p‖Lr(Q(a0,b0)) 6 C(1 + Γ(1, x, a0, b0))

for some constant C > 0.

P r o o f. For every ϕ ∈ C2,1c (QT ) such that ϕ(∙, T ) = 0, by (2.7), we
obtain, with A0 as in (1.1), that

∫

Q(a0,b0)

p(∂tϕ+A0ϕ) dy dt = −
∫

Q(a0,b0)

pF ∙Dϕdy dt

+

∫

RN
(p(x, y, b0)ϕ(y, b0)− p(x, y, a0)ϕ(y, a0)) dy.

Since
∫
RN p(x, y, t) dy 6 1 for all t > 0, x ∈ R

N , it follows that

∣
∣
∣
∣

∫

Q(a0,b0)

p(∂tϕ+A0ϕ) dy dt

∣
∣
∣
∣ 6 Γ(1, x, a0, b0)‖ϕ‖W 1,0

∞ (Q(a0,b0))
+ 2‖ϕ‖∞

6 (2 + Γ(1, x, a0, b0))‖ϕ‖W 1,0
∞ (Q(a0,b0))

. (3.2)

Fix ψ ∈ C∞c (Q(a0, b0)) and consider the parabolic problem
{
∂tϕ+A0ϕ = ψ in QT ,

ϕ(y, T ) = 0, y ∈ RN .
(3.3)

The Schauder theory (see [11, Chap. 9]) provides a solution ϕ ∈
C2+α,1+α/2(QT ). Fixing r

′
1 > N + 2, by [15, Theorem IV.9.1] we see that ϕ

belongs to W 2,1
r′1
(QT ) and satisfies the estimate

‖ϕ‖W 2,1

r′
1

(QT )
6 C‖ψ‖

L
r′
1 (Q(a0,b0))

. (3.4)

Since r′1 > N + 2, from the Sobolev embedding theorems (cf. [15,
Lemma II.3.3]) and (3.4) it follows that

‖ϕ‖W 1,0
∞ (Q(a0,b0))

6 ‖ϕ‖W 1,0
∞ (QT )

6 C‖ϕ‖W 2,1

r′
1

(QT )
6 C‖ψ‖

L
r′
1 (Q(a0,b0))

.

Note that the solution ϕ of (3.3) cannot be inserted directly in (3.2), since
it does not have compact support with respect to the space variables. To
overcome this problem we fix a smooth function θ ∈ C∞c (R

N) such that
θ(y) = 1 for |y| 6 1 and write (3.2) for ϕn(y, t) = θ(y/n)ϕ(y, t). Letting
n → ∞ and using the dominated convergence we see that (3.2) holds also
for such a ϕ. Therefore,

∣
∣
∣
∣

∫

Q(a0,b0)

pψ dy dt

∣
∣
∣
∣ 6 C(1 + Γ(1, x, a0, b0))‖ψ‖Lr′1 (Q(a0,b0))



12 Metafune G., Pallara D., Rhandi A.

and hence p ∈ Lr1(Q(a0, b0)), where 1/r1 + 1/r′1 = 1. Since r
′
1 > N + 2 is

chosen arbitrarily, p ∈ Lr(Q(a0, b0)) for all r ∈ [1, (N + 2)/(N + 1)), and

‖p‖Lr(Q(a0,b0)) 6 C(1 + Γ(1, x, a0, b0)). (3.5)

Proposition 3.1 is proved.

Lemma 3.1. If Γ(k, x, a0, b0) <∞ for k > 1 and p ∈ Lr(Q(a0, b0)) for
some 1 < r 6 ∞, then p ∈ H s,1(Q(a, b)) for s := rk(r + k − 1) if r < ∞,
s = k if r =∞.

P r o o f. In the proof we denote by c a generic constant depending on
k, x, a0, b0.
Let η be a smooth function such that 0 6 η 6 1, η(t) = 1 for a 6 t 6 b

and η(t) = 0 for t 6 a0 and t > b0. Consider ϕ ∈ C2,1c (QT ). Substituting ηϕ
instead of ϕ in (2.7) and setting q := ηp, we obtain

∫

QT

q(∂tϕ+A1ϕ) dy dt−
∫

QT

(qG ∙Dϕ+ pϕ∂tη) dy dt, (3.6)

where A1 =
∑
i,j aijDij and Gi = Fi +Di(

∑N
j=1 aij).

By Hölder’s inequality we have
∫

Q(a0,b0)

|F |sps dy dt =
∫

Q(a0,b0)

|F |sps/kps(1−1/k) dy dt

6

(∫

Q(a0,b0)

|F |kp dy dt
)s/k(∫

Q(a0,b0)

ps(k−1)/(k−s) dy dt

)1−s/k

=

(∫

Q(a0,b0)

|F |kp dy dt
)s/k(∫

Q(a0,b0)

pr dy dt

)1−s/k

6 Γ(k, x, a0, b0)
s

(∫

Q(a0,b0)

pr dy dt

)1−s/k
,

whence
‖Gp‖Ls(Q(a0,b0)) 6 c‖p‖

(k−1)/k
Lr(Q(a0,b0))

.

This yields
∣
∣
∣
∣

∫

QT

q(∂tϕ+A1ϕ) dy dt

∣
∣
∣
∣ 6 c‖p‖

(k−1)/k
Lr(Q(a0,b0))

‖ϕ‖W 1,0

s′
(QT )

,

where 1/s + 1/s′ = 1. Replacing ϕ by its difference quotients with respect
to the variable y,

τ−hϕ(y, t) := |h|
−1(ϕ(y − hej , t)− ϕ(y, t)), (y, t) ∈ QT , 0 6= h ∈ R,

and since aij ∈ C1b (R
N), we obtain

∣
∣
∣

∫

QT

τhq(∂tϕ+A1ϕ) dy dt
∣
∣
∣ 6 c‖p‖(k−1)/kLr(Q(a0,b0))

‖ϕ‖W 2,1

s′
(QT )

. (3.7)
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As in the proof of Proposition 3.1 we approximate ϕ in W 2,1
s′ (QT ) with a

sequence of functions ϕn ∈ C1,2c (QT ). Since q ∈ L
s(QT ), writing (3.7) for ϕn

and letting n→∞ we see that (3.7) holds for ϕ.
Since s = (s− 1)s′ < r, we find then |τhq|s−2τhq ∈ Ls

′
(QT ). Using [15,

Theorem 9.2.3] we choose now ϕ ∈W 2,1
s′ (QT ) such that

{
∂tϕ+A1ϕ = |τhq|s−2τhq in QT ,

ϕ(y, T ) = 0, y ∈ RN ,

and
‖ϕ‖W 2,1

s′
(QT )

6 C‖|τhq|
s−1‖Ls′ (QT ).

Therefore, we get
∫

QT

|τhq|
s dy dt 6 c‖p‖(k−1)/kLr(Q(a0,b0))

‖τhq‖
s−1
Ls(QT )

,

hence,
‖Dq‖Ls(QT ) 6 c‖p‖

(k−1)/k
Lr(QT )

and Dq ∈ Ls(QT ), q ∈W 1,0
s (QT ).

Now we treat the time derivative. Using the above estimates we deduce
that
∣
∣
∣
∣

∫

QT

q∂tϕdy dt

∣
∣
∣
∣ 6

∣
∣
∣
∣

∫

QT

qA0ϕdy dt

∣
∣
∣
∣+ c‖p‖

(k−1)/k
Lr(Q(a0,b0))

‖ϕ‖W 1,0

s′
(QT )

=

∣
∣
∣
∣

∫

QT

N∑

i,j=1

aijDiϕDjq dy dt

∣
∣
∣
∣+ c‖p‖

c(k−1)k
Lr(Q(a0,b0))

‖ϕ‖W 1,0

s′
(QT )

6 c‖Dq‖Ls(QT )‖ϕ‖W 1,0

s′
(QT )
+ c‖p‖(k−1)/kLr(Q(a0,b0))

‖ϕ‖W 1,0

s′
(QT )

6 c‖p‖(k−1)/kLr(Q(a0,b0))
‖ϕ‖W 1,0

s′
(QT )

and the statement follows. Lemma 3.1 is proved.

Proposition 3.2. If Γ(k, x, a0, b0) < ∞ for some 1 < k 6 N + 2, then
p ∈ Lr(Q(a, b)) for all r ∈ [1, (N + 2)/(N + 2− k)) and p ∈ Hs,1(Q(a, b))
for all s ∈ (1, (N + 2)/(N + 3− k)).

P r o o f. Let us see how the arguments in the proof of Lemma 3.1
can be iterated. Let r1 < (N + 2)/(N + 1), so that Proposition 3.1 can be
applied, and fix a parameter m (to be chosen later) depending on k and r.
Set an = a0+n(a− a0)/m, bn = b0−n(b0− b)/m for n = 1, . . . ,m. Suppose
that p ∈ Lrn(Q(an, bn)) and take sn := krn/(k + rn − 1). Then, 1 < sn < rn,
sn < k, and rn = sn(k − 1)/(k − sn).
We consider again q = ηp with η(t) = 1 for an+1 6 t 6 bn+1 and η(t) = 0

for t 6 an, t > bn. As in the proof of Lemma 3.1 we get
∣
∣
∣
∣

∫

QT

q∂tϕdy dt

∣
∣
∣
∣ 6 c‖p‖

(k−1)/k
Lrn (Q(an,bn))

‖ϕ‖W 1,0

s′n
(QT )

,
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where c denotes a constant depending on k, x, a0, b0. Therefore,
p ∈ H sn,1(Q(an+1, bn+1)) and, by Theorem 7.1, we obtain that p ∈
Lrn+1(Q(an+1, bn+1)), where

1

rn+1
=
1

sn
−

1

N + 2
=
1

rn

(

1−
1

k

)

+
1

k
−

1

N + 2
.

Since 1/r1 > (N + 1)/(N + 2), it follows that

1

r2
−
1

r1
< −
1

k

(

1−
1

N + 2

)

+
1

k
−

1

N + 2
=

1

N + 2

(
1

k
− 1

)

< 0.

Hence, by induction, (1/rn) is a positive and decreasing sequence which con-
verges to (N + 2− k)/(N + 2). Therefore, for any r < (N + 2)/(N + 2− k),
after finitely many, say m, iterations we get rn > r and p ∈ Lr(Q(a, b)). The
second half of the statement now follows from Lemma 3.1. Proposition 3.2
is proved.

Corollary 3.1. If Γ(k, x, a0, b0) < ∞ for some k > N + 2, then p

belongs to L∞(Q(a, b)).

P r o o f. We know from Proposition 3.2 that p ∈ Lr(Q(a, b)) for all
r ∈ [1,∞). Hence, by Lemma 3.1, p ∈ H s,1(Q(a, b)) for all s ∈ (1, k).
Choosing N + 2 < s < k it follows from Theorem 7.1 that p ∈ L∞(Q(a, b)).
Corollary 3.1 is proved.

A closer look at the above proof shows that p is globally Hölder contin-
uous in (y, t).

Proposition 3.3. Assume that Γ(k, x, a0, b0) <∞ for some k > N+2.
Then, p belongs to Cν([a, b], Cθb (R

N)) for some ν, θ > 0.

P r o o f. Since k > N + 2, we can choose α > 0 such that 1/k <

α < 1
2
and k(1 − 2α) > N . So, applying the embedding theorem in [13,

Corollary 7.5] for the space H k,1(QT ) (with q = p = k, γ = 1, and β = 2α)
we obtain

‖p(t)− p(τ)‖W 1−2α,k(RN ) 6 C|t− τ |
α−1/k‖p‖H k,1(Q(a,b))

for a 6 τ < t 6 b, where the constant C > 0 is independent of τ , t. Thus,
p belongs to the space Cα−1/k([a, b],W 1−2α,k(RN)). Since k(1− 2α) > N , it
follows from the Sobolev embedding theorem that

p ∈ Cα−1/k([a, b], Cθb (R
N)), for some θ > 0.

Proposition 3.3 is proved.
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4. Uniform and pointwise bounds on transition densities. We
consider the following assumption depending on the weight function ω which,
in our examples, will be a power or the exponential of a power.

(H1) W1, W2 are Lyapunov functions for A, W1 6 W2 and there exists
1 6 ω ∈ C2(RN) such that for some c > 0 and k > N + 2
(i) ω 6 cW1, |Dω| 6 c ω(k−1)/kW

1/k
1 , |D

2ω| 6 c ω(k−2)/kW 2/k
1 ;

(ii) ω|F |k 6 cW2.
We denote by ζ1, ζ2 the functions defined by (2.1) and associated

with W1, W2, respectively.
We use different Lyapunov functions to obtain more precise estimates

in the theorem below and its corollaries.

Theorem 4.1. Assume (H1). Then, there exists a constant C > 0 such
that

0 < ω(y)p(x, y, t) 6 C

(∫ b0

a0

ζ2(x, s) ds+
1

(a− a0)k/2

∫ b0

a0

ζ1(x, s) ds

)

(4.1)

for all x, y ∈ RN , a 6 t 6 b.

P r o o f. S t e p 1. Assume first that ω is bounded. Since
Γ(k, x, a0, b0) < ∞, we have p ∈ L∞(Q(a, b)) for every a0 < a < b < b0,
by Corollary 3.1. We choose a smooth function η(t) such that η(t) = 1
for a 6 t 6 b and η(t) = 0 for t 6 a0 and t > b0, |η′| 6 2/(a− a0). We
consider ψ ∈ C2,1c (QT ) such that ψ(∙, T ) = 0. Setting q = ηk/2p and taking
ϕ(y, t) = ηk/2ω(y)ψ(y, t) in (2.7) we obtain

∫

QT

ωq(−∂tψ −A0ψ) dy dt =
∫

QT

[

q

(

ψA0ω + 2
N∑

i,j=1

aijDiωDjψ

+ωF ∙Dψ + ψF ∙Dω
)

+
k

2
pωψη(k−2)/2∂tη

]

dy dt. (4.2)

Since ωq ∈ L1(QT ) ∩ L∞(QT ), Theorem 7.3 yields

‖ωq‖L∞(QT ) 6 C
(
‖qD2ω‖

L
k
2 (QT )

+ ‖qDω‖Lk(QT ) + ‖ωqF‖Lk(QT )

+ ‖qF ∙Dω‖Lk/2(QT ) +
1

a− a0
‖pωη(k−2)/2‖Lk/2(QT )

)
.

Next, observe that, by (H1)(ii),

‖ωqF‖Lk(QT ) 6 ‖ωq‖
(k−1)/k
L∞(QT )

‖ωqF k‖1/kL1(QT ) 6 c‖ωq‖
(k−1)/k
L∞(QT )

(∫ b0

a0

ζ2 dt

)1/k
,

and that

‖ωpη(k−2)/2‖Lk/2(QT ) 6 ‖ωq‖
(k−2)/k
L∞(QT )

‖ωp‖2/kL1(Q(a0,b0))

6 c‖ωq‖(k−2)/kL∞(QT )

(∫ b0

a0

ζ1 dt

)2/k
.
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We combine (H1)(i) and (H1)(ii) to estimate the remaining terms:

‖qFDω‖Lk/2(QT ) 6
(∫

QT

qk/2ω(k−2)/2W2 dy dt

)2/k

6 c‖ωq‖(k−2)/kL∞(QT )

(∫ b0

a0

ζ2 dt

)2/k

and, similarly,

‖qD2ω‖Lk/2(QT ) 6 c‖ωq‖(k−2)/kL∞(QT )

(∫ b0

a0

ζ1 dt

)2/k
,

‖qDω‖Lk(QT ) 6 c‖ωq‖(k−1)/kL∞(QT )

(∫ b0

a0

ζ1 dt

)1/k
.

Collecting similar terms and recalling that W1 6W2 we obtain

‖ωq‖L∞(QT ) 6 C‖ωq‖(k−1)/kL∞(QT )

(∫ b0

a0

ζ2 dt

)1/k

+C‖ωq‖(k−2)/kL∞(QT )

((∫ b0

a0

ζ2 dt

)2/k
+

1

a− a0

(∫ b0

a0

ζ1 dt

)2/k)

.

Hence, after simple computations,

‖ωq‖L∞(QT ) 6 C
(∫ b0

a0

ζ2 dt+
1

(a− a0)k/2

∫ b0

a0

ζ1 dt

)

,

and (4.1) follows.

S t e p 2. If ω is not bounded, we consider ωε = ω/(1+εω). A straight-
forward computation shows that ωε satisfies (H1) with a constant c indepen-
dent of ε. Therefore, from Step 1 we obtain

0 < ωε(y)p(x, y, t) 6 C

(∫ b0

a0

ζ2(x, t) dt+
1

(a− a0)k/2

∫ b0

a0

ζ1(x, t) dt

)

(4.3)

with c independent of ε, and letting ε→ 0 proves the statement.
Theorem 4.1 can be applied with ω =W1 = 1 yielding uniform bounds

on p, for fixed x.

Corollary 4.1. Take ω = W1 = 1 in (H1)(i) and assume that (H1)(ii)
holds. Then

‖p‖L∞(Q(a,b)) 6 C
(∫ b0

a0

ζ2(x, t) dt+
b0 − a0
(a− a0)k/2

)

.

Let us now consider some special cases.
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Corollary 4.2. Assume that

lim sup
|x|→∞

|x|1−βF (x) ∙
x

|x|
6 −c, (4.4)

for some c > 0, β > 2, and that |F (x)| 6 c1e
c2|x|

β−ε
for some ε, c1, c2 > 0.

Then, if γ < (βΛ)−1c, where Λ is the maximum eigenvalue of (aij), the
inequality

0 < p(x, y, t) 6 c3 exp(c4t
−β(β−2)) exp(−γ|y|β)

holds for x, y ∈ RN , 0 < t 6 T and suitable c3, c4 > 0.

P r o o f. We take ω(y) = eγ|y|
β

, W1(y) = W2(y) = eδ|y|
β

for some γ <
δ < (βΛ)−1c and use Theorem 4.1 with a = t and a−a0 = b0−b = b−a = 1

2
t.

The assertion then follows using Proposition 2.5.
E x a m p l e 4.1. Let us specialize the above corollary to the case of

the operators

A = Δ− |x|r
x

|x|
∙D

with r > 1. Then Corollary 4.2 can be applied with β = r + 1 and any
γ < 1/(r + 1). Therefore,

0 < p(x, y, t) 6 c1 exp(c2t
−(r+1)/(r−1)) exp(−γ|y|r+1)

for all 0 < t 6 T , x, y ∈ RN .
Under conditions similar to those of Corollary 4.2, the estimate of p can

be improved with respect to the time variable, loosing the exponential decay
in y.

Corollary 4.3. Assume that

lim sup
|x|→∞

|x|1−βF (x) ∙
x

|x|
< 0, (4.5)

for some β > 2. If |F (x)| 6 c(1 + |x|2)γ1 with γ1 > (β − 2)/4, then for every
γ2 > 0, k > N + 2, there exists a constant C > 0 such that

0 < p(x, y, t) 6
C

tσ
(1 + |y|2)−γ2

for all x, y ∈ RN , 0 < t 6 1, where

σ =
2

β − 2
((k − 2)γ1 + γ2).

P r o o f. Observe that Wr(x) = (1 + |x|2)r is a Lyapunov function for
every r > 0. If ζr(x, t) is the corresponding function defined in (2.1), then
Proposition 2.6 yields

ζr(x, t) 6 crt
−2r/β−2
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for x ∈ RN and 0 < t 6 1. We set a = t and a− a0 = b0 − b = b− a = 1
2
ts,

where s > 1 will be chosen later, and we apply Theorem 4.1 with ω(x) =
W1(x) = (1 + |x|2)γ2 and W2(x) = (1 + |x|2)kγ1+γ2 . Thus we obtain

p(x, y, t) 6 C

(

t−2(kγ1+γ2)/(β−2)+s + t−2γ2/(β−2)−s
k
2+s

)

(1 + |y|2)−γ2 .

Minimizing over s we get s = 4γ1/(β − 2) and the assertion follows.
E x a m p l e 4.2. (i) Choosing γ1 = (β − 1)/2, γ2 = 0 in the above

corollary one obtains the following estimate of the norm of T (t) as an oper-
ator from L1(RN) to L∞(RN):

‖T (t)‖L1(RN )→L∞(RN ) 6 ct
−(k−2)(β−1)/(β−2), 0 < t 6 1.

Observe, finally, that the operator T (t) need not map Lp(RN) into itself, for
any p > 1. A simple example of this situation is given by the 1-dimensional
operator D2 − x3D (for which β = 4 is in the estimate above), see [22,
Remark 4.3].

(ii) Let us consider again the operators A = Δ− |x|r x|x| ∙D with r > 1.
Then Corollary 4.3 can be applied with β = r + 1 and γ1 = r/2 yielding

p(x, y, t) 6 Ct−(k−2)r/(r−1)−2γ2/(r−1)(1 + |y|2)−γ2 .

5. Pointwise bounds for the derivatives of transition densities.
In this section we derive pointwise estimates for the derivatives of the ker-
nel. The first step consists in showing that p1/2 belongs to W 1,0

2 (Q(a1, b1)).
Observe that estimates in this space are known for invariant measures, that
is, for the limit, as t → ∞, of the transition kernels p(x, ∙, t), see [2], [5],
[19], [4].

As in Section 4, we fix 0 < a0 < a < a1 < b1 < b < b0 6 T with
b− b1 > a1 − a, a1 − a > a− a0.

Theorem 5.1. Assume that (H1) holds for a certain weight function ω
such that ∫

RN

(
1

ω(y)

)1−ε
dy <∞ (5.1)

for some ε ∈ (0, 1). Then the function p ln p is integrable in RN for all
t ∈ [a, b] and

∫

Q(a,b)

|Dp(x, y, t)|2

p(x, y, t)
dy dt 6

1

λ2

∫

Q(a,b)

|F (y)|2p(x, y, t) dy dt

−
2

λ

∫

RN
[p(x, y, t) ln p(x, y, t)]t=bt=a dy <∞.

In particular, p1/2 belongs to W 1,0
2 (Q(a, b)).
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P r o o f. Let us first observe that the functions p ln2 p and p ln p are
integrable in Q(a, b) and in RN for all fixed t ∈ [a, b], respectively, as follows
from Theorem 4.1 and (5.1).
Since p ∈W 1,0

k (Q(a, b)) by Lemma 3.1, from (2.7) we get

∫

Q(a,b)

p∂tϕdy dt =

∫

Q(a,b)

(∑

i,j

aijDiϕDjp− pF ∙Dϕ
)

dy dt

+

∫

RN
[p(x, y, t)ϕ(t, y)]t=bt=a dy (5.2)

for every ϕ ∈ C2,1c (Q(a, b)). By density, the previous equality holds if ϕ be-
longs to W 1,1

2 (Q(a, b)) with compact support in y. Let us take ξ ∈ C
∞
c (R

N)
such that ξ(y) = 1 for |y| 6 1 and ξ(y) = 0 for |y| > 2, ξn(y) = ξ(y/n)
and note that, by Proposition 2.1, the functions ξ2n ln p(x, ∙, ∙) belong to
W 1,1
2 (Q(a, b)). Substituting ϕ = ξ2n ln p in (5.2) and writing a(ξ, η) for∑
i,j aijξiηj we get

∫

Q(a,b)

ξ2n∂tp dy dt =

∫

Q(a,b)

(

ξ2n
a(Dp,Dp)

p
+ 2ξn ln p a(Dp,Dξn)− ξ

2
nF ∙Dp

− 2ξnp ln pF ∙Dξn

)

dy dt

+

∫

RN

[
p(x, y, t)ξ2n(y) ln p(x, y, t)

]t=b

t=a
dy.

That is,

∫

Q(a,b)

ξ2n
a(Dp,Dp)

p
dy dt = −2In+Jn+2Kn+

∫

RN
ξ2n

[
p−p ln p

]t=b

t=a
dy, (5.3)

where

In =

∫

Q(a,b)

ξn ln p a(Dp,Dξn) dy dt,

Jn =

∫

Q(a,b)

ξ2n(F ∙Dp) dy dt,

Kn =

∫

Q(a,b)

ξnp ln pF ∙Dξn dy dt.

By Hölder’s inequality we have

|In| 6
(∫

Q(a,b)

ξ2n
a(Dp,Dp)

p
dy dt

)1/2

×
(∫

Q(a,b)

p ln2 p a(Dξn, Dξn) dy dt

)1/2
(5.4)

6 ε

∫

Q(a,b)

ξ2n
a(Dp,Dp)

p
dy dt+

C

εn2

∫

Q(a,b)

p ln2 p dy dt.
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Moreover,

|Jn| 6
(∫

Q(a,b)

|F |2 p dy dt
)1/2(∫

Q(a,b)

ξ2n
|Dp|2

p
dy dt

)1/2

6
ε

λ

∫

Q(a,b)

ξ2n
a(Dp,Dp)

p
dy dt+

C

ε

∫

Q(a,b)

|F |2 p dy dt

and

|Kn| 6
C

n

∫

Q(a,b)

|F | p| ln p| dy dt.

Hence (5.3) yields

(

1−
(

2 +
1

λ

)

ε

)∫

Q(a,b)

ξ2n
a(Dp,Dp)

p
dy dt 6

C

εn2

∫

Q(a,b)

p ln2 p dy dt

+
C

ε

∫

Q(a,b)

|F |2 p dy dt+
C

n

∫

Q(a,b)

|F | p ln p dy dt+
∫

RN
ξ2n

[
p− p ln p

]t=b

t=a
dy.

Letting n → ∞, since the function p ln2 p is integrable in Q(a, b), it follows
that ∫

Q(a,b)

a(Dp,Dp)

p
dy dt <∞

and hence, by (5.4), In → 0 as n → ∞. Since also Kn → 0, letting n → ∞
in (5.3) and estimating Jn as above we find that

λ

∫

Q(a,b)

|Dp|2

p
dy dt 6

∫

Q(a,b)

a(Dp,Dp)

p
dy dt

6

(∫

Q(a,b)

|F |2 p dy dt
)1/2(∫

Q(a,b)

|Dyp|2

p
dy dt

)1/2
+

∫

RN
[p− p ln p]t=bt=a dy

6 ε

∫

Q(a,b)

|Dp|2

p
dy dt+

1

4ε

∫

Q(a,b)

|F |2 p dy dt+
∫

RN
[−p ln p]t=bt=a dy,

because
∫
RN p(x, y, a) dy =

∫
RN p(x, y, b) dy = 1, see [21, Proposition 5.9],

and the statement follows if we choose ε = λ/2. Theorem 5.1 is proved.

Assuming also that F ∈W 1
∞,loc(R

N) and

∫

Q(a0,b0)

(|F |k + | divF |k/2)p dy dt <∞, k > 2(N + 2), (5.5)

we can now prove that Dp is bounded.

Lemma 5.1. Assume that conditions (H1), (5.1), and (5.5) hold. Then
Dp ∈ Ls(Q(a1, b1)) for all 1 6 s 6∞.

P r o o f. From Corollary 3.1 and Lemma 3.1 we know that Dp ∈
Lk(Q(a, b)).
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Consider the function q = ηp, where η(t) = 1 for a1 6 t 6 b1 and
η(t) = 0 for t 6 a, t > b. Observe that, by Theorem 5.1,

√
q ∈ W 1,0

2 (QT ).
Let us consider r1 > 1 with

1

r1
=

(

1−
2

k

)
1

k
+
2

k
.

By taking α = k/r1 and β > 1 such that 2/α + 1/β = 1, we deduce, using
Hölder’s inequality and Theorem 5.1, that
∫

QT

|F |r1 |Dq|r1 dy dt =
∫

QT

|F |r1q1/αq−1/α|Dq|2/α|Dq|r1−2/α dy dt

6

(∫

Q(a,b)

|Dp|2

p
dy dt

)1/α(∫

QT

|F |r1αq dy dt
)1/α(∫

QT

|Dq|(r1−
2
α )β dy dt

)1/β

=

(∫

Q(a,b)

|Dp|2

p
dy dt

)1/α(∫

QT

|F |kq dy dt
)1/α(∫

QT

|Dq|k dy dt
)1/β

<∞.

By Proposition 2.1(iii) the function q belongs to W 2,1
r1,loc
(QT ) ∩ Lr1(QT ) and

solves the parabolic problem
{
∂tq −A0q = −F ∙Dq − q divF + p∂tη in QT ,

q(y, 0) = 0, y ∈ RN ,

whose right-hand side belongs to Lr1(QT ) by (5.5) and the previous estimate.
By the parabolic regularity (see [15, Theorem IV.9.1]), we deduce that q ∈
W 2,1
r1
(QT ).
If r1 < N + 2 we use again the Sobolev embedding theorem to deduce

that Dq ∈ Ls1(QT ) for 1/s1 = 1/r1 − 1/(N + 2).
Now, we iterate the above procedure by setting for every n ∈ N

1

rn+1
=

(

1−
2

k

)
1

sn
+
2

k
,
1

sn
=
1

rn
−

1

N + 2
and s0 = k.

If rn < N + 2 for every n, then 0 6 sn 6 sn+1. Take s = limn→∞ sn. Since
k > 2(N + 2), one can see that

1

s
=

(

1−
2

k

)
1

s
+
2

k
−

1

N + 2
< 0.

Thus, rn > N + 2 for some n and hence Dq ∈ L∞(QT ), by the Sobolev
embedding. Similarly, if rn = N + 2 for some n, then sn < ∞ is arbitrary
and hence rn+1 > N +2, taking sn sufficiently large and using k > 2(N +2).
Thus Dq ∈ L∞(QT ) in all cases.

The statement follows now from Theorem 5.1, since

∫

QT

|Dq| dy dt 6
(∫

QT

|Dq|2

q
dy dt

)1/2(∫

QT

q dy dt

)1/2
<∞,



22 Metafune G., Pallara D., Rhandi A.

and the proof is complete. Lemma 5.1 is proved.
We can now refine Lemma 5.1 providing also a quantitative estimate for

the W 2,1
k/2-norm of p.

Theorem 5.2. Assume that conditions (H1), (5.1), and (5.5) hold. Then
p(x, ∙, ∙) ∈W 2,1

k/2(Q(a1, b1)). Moreover, there is a constant C > 0 such that

‖p(x, ∙, ∙)‖W 2,1

k/2
(Q(a1,b1))

6 C

{(∫

Q(a,b)

|F |kp dy dt
)1/2(∫

Q(a,b)

|Dp|2

p
dy dt

)1/2

+ ‖p‖(k−2)/kL∞(Q(a,b))

((∫

Q(a,b)

| divF |k/2p dy dt
)2/k

+
(b− a)2/k

a1 − a

)}

.

P r o o f. Take η as in the proof of Lemma 5.1 such that |η′| 6
2/(a1 − a). Since Dq ∈ L∞(QT ) by Lemma 5.1, it follows that

∫

QT

|F |k/2|Dq|k/2 dy dt =
∫

QT

|F |k/2|Dq|(k−2)/2
|Dq|
√
q

√
q dy dt

6 ‖Dq‖(k−2)/2L∞(QT )

(∫

Q(a,b)

|Dp|2

p
dy dt

)1/2(∫

QT

|F |kq dy dt
)1/2

.

This gives

‖|F ||Dq|‖Lk/2(QT ) 6
(∫

Q(a,b)

|F |kp dy dt
)1/k

×‖Dq‖(k−2)/kL∞(QT )

(∫

Q(a,b)

|Dp|2

p
dy dt

)1/k
.

Let us consider again the parabolic problem satisfied by q:
{
∂tq −A0q = −F ∙Dq − q divF + p∂tη in QT ,

q(y, 0) = 0, y ∈ RN .

Using (5.5) and the previous computation, one can estimate the Lk/2-norm
of the right-hand side through the quantity

(∫

Q(a,b)

|F |kp dy dt
)1/k
‖Dq‖(k−2)kL∞(QT )

(∫

Q(a,b)

|Dp|2

p
dy dt

)1/k

+ ‖q‖(k−2)kL∞(QT )

((∫

Q(a,b)

| divF |k/2p dy dt
)2/k

+
(b− a)2/k

a1 − a

)

.

Therefore, q ∈W 2,1
k/2(QT ) and, using the embedding of W

1,0
k/2(QT ) in L

∞(QT ),
we get

‖q‖W 2,1

k/2
(QT )

6 C

{(∫

Q(a,b)

|F |kp dy dt
)1/k
‖q‖(k−2)/k

W 2,1

k/2
(QT )

(∫

Q(a,b)

|Dp|2

p
dy dt

)1/k
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+ ‖q‖(k−2)/kL∞(QT )

((∫

Q(a,b)

| divF |k/2p dy dt
)2/k

+
(b− a)

2
k

a1 − a

)}

6 C

{

ε‖q‖W 2,1

k/2
(QT )
+ Cε

(∫

Q(a,b)

|F |kp dy dt
)1/2(∫

Q(a,b)

|Dp|2

p
dy dt

)1/2

+ ‖q‖(k−2)/kL∞(QT )

((∫

Q(a,b)

| divF |k/2p dy dt
)2/k

+
(b− a)2/k

a1 − a

)}

and the estimate for ‖q‖W 2,1

k/2
(QT )

follows for Cε = 1
2
. Theorem 4.1 is proved.

The following result is similar to Theorem 4.1, but is based on The-
orem 5.2 rather than Corollary 3.1. In the sequel, we use the following
assumption.
(H2) F ∈ C2(RN ,RN), W1 6 W2 are Lyapunov functions for A and

there exists 1 6 ω ∈ C4(RN) such that

(ωk + |Dω|k + |D2ω|k + |D3ω|k + |D4ω|k) 6 CW1

and

(ωk + |Dω|k + |D2ω|k + |D3ω|k)(1 + |F |k) + (ωk + |Dω|k + |D2ω|k)

× (1 + |DjF |
k + | div(DjF )|

k) 6 CW2, j = 1, . . . , N,

for some k > 2(N+2) and a constant C > 0. Moreover we suppose that (5.1)
holds for some ε ∈ (0, 1).
We still denote by ζ1, ζ2 the functions defined by (2.1) and associated

with W1,W2, respectively.
R e m a r k 5.1. The C4 requirement on ω is not always necessary. In

order to simplify the presentation, we refrain from specifying the minimal
regularity needed in each statement. The minimal degree of the smoothness
will be clear from the context. Notice also that (H2) implies (H1) and (5.5),
hence all the estimates depending on (H1) and (5.5) are true under (H2).

Theorem 5.3. Assume that assumption (H2) holds. Then there is a
constant C > 0 such that

|ω(y)Dp(x, y, t)|

6 C

{

‖Dp‖(k−2)/kL∞(Q(a1,b1))

(∫

Q(a,b)

|Dp|2

p
dy dt

)1/k(∫ b

a

ζ2(x, t) dt

)1/k

+ ‖p‖(k−2)/kL∞(Q(a,b))

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

)2/k}

.

for all x, y ∈ RN and a1 6 t 6 b1.
P r o o f. As in the proof of Theorem 5.2, let us take q = ηp. Then we

have ω(y)q(y, 0) = 0 and

∂t(ωq)−A0(ωq) = ω(∂tq −A0q)− 2a(Dω,Dq)− qA0ω

= −ωF ∙Dq − ωq divF + ωp∂tη − 2a(Dω,Dq)− qA0ω. (5.6)
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Assumption (H2) easily gives

‖ωq divF‖Lk/2(QT ) + ‖qA0ω‖Lk/2(QT ) 6 C‖q‖
(k−2)/k
L∞(QT )

(∫ b

a

ζ2(x, t) dt

)2/k

and

‖ωp∂tη‖Lk/2(QT ) 6 ‖p‖
(k−2)/k
L∞(Q(a,b))

C

a1 − a

(∫ b

a

ζ1(x, t) dt

)2/k
.

To treat the terms containing Dq we proceed as in Theorem 5.2, getting
∫

QT

ωk/2|F |k/2|Dq|k/2 dy dt =
∫

QT

ωk/2|F |k/2|Dq|(k−2)/2
|Dq|
√
q

√
q dy dt

6 ‖Dq‖(k−2)/2L∞(QT )

(∫

QT

|Dq|2

q
dy dt

)1/2(∫

QT

ωk|F |kq dy dt
)1/2

,

whence

‖ω|F ||Dq|‖Lk/2(QT ) 6 C‖Dq‖
k−2/k
L∞(QT )

(∫

QT

|Dq|2

q
dy dt

)1/k(∫ b

a

ζ2(x, t) dt

)1/k
.

The term |Dω ∙ Dq| is estimated in the same way. Then the right-hand
side of (5.6) belongs to Lk/2(QT ). Hence, ωq ∈ W

2,1
k/2(QT ) and the following

estimate holds:

‖ω(∙)p(x, ∙, ∙)‖W 2,1

k/2
(Q(a1,b1))

6 C

{

‖Dp‖(k−2)/kL∞(Q(a1,b1))

(∫

Q(a,b)

|Dp|2

p
dy dt

)1/k(∫ b

a

ζ2(x, t) dt

)1/k

+ ‖p‖k−2/kL∞(Q(a,b))

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

)2/k}

. (5.7)

Since k > 2(N + 2), we use Sobolev embedding (see [15, Lemma II.3.3])
to get the same estimate for the L∞-norm of D(ωq) in QT . Now we use
Theorem 4.1 with ω replaced by ω̃ = (1 + |Dω|2)k/2, to obtain

‖qDω‖L∞(QT ) 6 ‖q‖
(k−1)/k
L∞(QT )

‖q|Dω|k‖1/kL∞(QT ) 6 ‖q‖
(k−1)/k
L∞(QT )

‖qω̃‖1/kL∞(QT )

6 C‖p‖k−1/kL∞(Q(a,b))

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

) 1
k

6 C‖p‖k−2/kL∞(Q(a,b))

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

)2/k
.

Using all the above estimates, one finally gets the result from the inequality

‖ωDq‖L∞(QT ) 6 ‖D(ωq)‖L∞(QT ) + ‖qDω‖L∞(QT ).

Theorem 5.3 is proved.
We can prove similar decay for D2p and ∂tp.
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Theorem 5.4. Assume that (H2) holds for certain weight functions ω
and ω0 such that ω|F | 6 c̃ ω0 for a constant c̃ > 0. If aij ∈ C2b (R

N), then
there is a constant C > 0 such that

|ω(y)D2p(x, y, t)|

6 C

(

‖Dp‖(k−2)kL∞(Q(a1,b1))

(∫

Q(a,b)

|Dp|2

p
dy dt

)1/k
+ ‖p‖(k−2)/kL∞(Q(a,b))

)

×
(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

)2/k

for all x, y ∈ RN and a1 6 t 6 b1.
P r o o f. Suppose, for simplicity, that aij = δij . From the proof of

Theorem 5.3 we know that the function v = ωq belongs to W 2,1
k/2(QT ) and

satisfies v(y, 0) = 0 and

∂tv −Δv = −ωF ∙Dq − ωq divF + ωp∂tη − 2Dω ∙Dq − qΔω. (5.8)

Since F ∈ C2, by the local parabolic regularity it follows that v ∈
W 3,1
k/2,loc(QT ). We can, therefore, differentiate (5.8) with respect to yj ∈ R,

j = 1, . . . , N , thus obtaining
(
∂

∂t
−Δ

)

Djv = −(Djω)F ∙Dq − ωDjF ∙Dq − ωF ∙DDjq − q(Djω) divF

−ω(Djq) divF − ωq div(DjF ) + (Djω)p∂tη + ω(Djp)∂tη

− 2DDjω ∙Dq − 2Dω ∙DDjq − (Djq)Δω − qΔDjω. (5.9)

As in the proof of Theorem 5.3 one can see that assumption (H2) easily
implies

‖qΔ(Djω)‖Lk/2(QT ) + ‖ωq div(DjF )‖Lk/2(QT ) + ‖qDjω divF‖Lk/2(QT )

6 C‖q‖(k−2)/kL∞(QT )

(∫ b

a

ζ2(x, t) dt

)2/k

and

‖(Djω)F ∙Dq‖Lk/2(QT ) + ‖ωDjF ∙Dq‖Lk/2(QT ) + ‖ω divF Djq‖Lk/2(QT )
+ ‖DjqΔω‖Lk/2(QT ) + ‖DDjω ∙Dq‖Lk/2(QT )

6 C‖Dq‖(k−2)/kL∞(QT )

(∫

QT

|Dq|2

q
dy dt

)1/k(∫ b

a

ζ2(x, t) dt

)1/k
.

Moreover,

‖(Djω)p∂tη‖Lk/2(QT ) 6
C

a1 − a
‖p‖(k−2)/kL∞(Q(a,b))

(∫ b

a

ζ1(x, t) dt

)2/k
,

‖ω(Djp)∂tη‖Lk/2(QT ) 6
C

a1 − a
‖Dq‖(k−2)/kL∞(QT )

(∫

QT

|Dq|2

q
dy dt

)1/k

×
(∫ b

a

ζ1(x, t) dt

)1/k
.
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To treat the terms containing the second order derivatives of q we use (H2),
Theorem 5.3, and (5.7) with ω replaced by ω0, since ω|F | 6 c̃ ω0. Hence,

‖ωF ∙DDjq‖Lk/2(QT ) 6 c̃‖ω0 ∙DDjq‖Lk/2(QT )

6 c̃
{
‖q|DDjω0|‖Lk/2(QT ) + ‖Djω0|Dq|‖Lk/2(QT )

+ ‖|Dω0|Djq‖Lk/2(QT ) + ‖ω0q‖W 2,1

k/2
(QT )

}

6 C

{

‖Dq‖(k−2)/kL∞(QT )

(∫

QT

|Dq|2

q
dy dt

)1/k(∫ b

a

ζ2(x, t) dt

)1/k

+ ‖q‖(k−2)/kL∞(QT )

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

)2/k}

.

Now, applying (5.7) with ω replaced by (1 + |Dω|2)1/2, the same arguments
yield

‖Dω ∙DDjq‖Lk/2(QT )

6 C

{

‖Dq‖k−2/kL∞(QT )

(∫

QT

|Dq|2

q
dy dt

)1/k(∫ b

a

ζ2(x, t) dt

)1/k

+ ‖q‖(k−2)/kL∞(QT )

(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

)2/k}

.

Therefore, the right-hand side of (5.9) belongs to Lk/2(QT ). Thus, since
Djv ∈ Lk/2(QT ) and Djv(y, 0) = 0, by the parabolic regularity, Djv ∈
W 2,1
k/2(QT ) and, by Sobolev embedding [15, Lemma II.3.3], Dijv = Dij(ωq) ∈

L∞(QT ). Moreover, from the above estimates we get

‖Dij(ωq)‖L∞(QT ) 6 C

(

‖Dq‖k−2/kL∞(QT )

(∫

QT

|Dq|2

q
dy dt

)1/k
+ ‖q‖k−2/kL∞(QT )

)

×
(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

)2/k
. (5.10)

Since ωDijq = Dij(ωq) − qDijω −DiωDjq −DjωDiq, it follows from (H2),
Theorem 4.1 with ω replaced by (1 + |D2ω|2)1/2, and Theorem 5.3 with
(1 + |Dω|2)1/2 instead of ω, that ωDijq ∈ L∞(QT ). Finally, the estimate for
D2p follows from Theorem 4.1, Theorem 5.3, and (5.10).

Theorem 5.5. Assume that (H2) holds for certain weight functions ω
and ω0 such that ω(|F | + | divF |) 6 c̃ ω0 for a constant c̃ > 0. If aij ∈
C2b (R

N), then there is a constant C > 0 such that

|ω(y)∂tp(x, y, t)|

6 C

(

‖Dp‖k−2/kL∞(Q(a1,b1))

(∫

Q(a,b)

|Dp|2

p
dy dt

)1/k
+ ‖p‖k−2/kL∞(Q(a,b))

)

×
(∫ b

a

ζ2(x, t) dt+
1

(a1 − a)k/2

∫ b

a

ζ1(x, t) dt

)2/k
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for all x, y ∈ RN and a1 6 t 6 b1.
P r o o f. As in the proof of Theorem 5.4 we assume, for simplicity, that

aij = δij . It follows from Proposition 2.1 that ω(y)∂tp = ω(y)Δp − ω(y)F ∙
Dp− ω(y) divF p. Hence, by assumption we have

|ω(y)∂tp(x, y, t)| 6 |ω(y)Δp(x, y, t)|+ c̃ ω0(y)|Dp(x, y, t)|+ c̃ ω0(y)p(x, y, t).

So the estimate for ∂tp follows now from Theorems 4.1, 5.3, and 5.4.
R e m a r k 5.2. In concrete examples, the weight ω and the Lyapunov

functions W1,W2 are powers or exponentials of powers. The above results
are formulated in a unified way, but the two situations are different. In the
exponential case, in fact, slightly simpler statements are possible: typically,
one has ω(y) = exp{γ|y|β} and W1(y) = W2(y) = exp{δ|y|β}, with β > 0
and δ > γ > 0, so only one Lyapunov function is needed.

6. Some applications. We show that, under the main assumptions of
the previous section, the semigroups T (∙) associated with the transition ker-
nels p are differentiable in Cb(R

N). We note that if the drift F is unbounded,
then the associated semigroup is rarely analytic in Cb(R

N), see [23].

Theorem 6.1. Suppose that aij ∈ C2b (R
N), F ∈ C2(RN) and there

exist constants c > 0, β > 2 such that

lim sup
|x|→∞

|x|1−βF (x) ∙
x

|x|
6 −c.

Assume, moreover, that |F (x)|+ |DF (x)|+ |D2F (x)| 6 c1 exp{c2|x|β−ε} for
some ε, c1, c2 > 0. Then the inequalities
(i) 0 < p(x, y, t) 6 c3 exp{c4t−β/(β−2)} exp{−γ|y|β},
(ii) |Dp(x, y, t)| 6 c3 exp{c4t−β/(β−2)} exp{−γ|y|β},
(iii) |D2p(x, y, t)| 6 c3 exp{c4t−β/(β−2)} exp{−γ|y|β},
(iv) |∂tp(x, y, t)| 6 c3 exp{c4t−β/(β−2)} exp{−γ|y|β}

hold for suitable c3, c4, γ > 0 and for all 0 < t 6 T and x, y ∈ RN .
P r o o f. From Proposition 2.5 we deduce that the function exp{δ|x|β}

is a Lyapunov function for a sufficiently small δ > 0. We fix ω(y) =
exp{γ|x|β}, ω0(y) = exp{γ0|x|β}, W1(y) = W2(y) = exp{δ|x|β} with γ < γ0
and kγ0 < δ. With these choices, it is easily seen that assumption (H2) holds
for both ω and ω0 so that all the results of the previous sections can be ap-
plied. Moreover, ζ(x, t) 6 c1 exp{(c2t−β/(β−2)} for suitable c1, c2 > 0 and
every x ∈ RN , t > 0, where ζ is the function defined in (2.1) and associated
with W1 =W2.
Statement (i) follows from Corollary 4.2. For the proof of the other

statements we apply Theorem 5.1 with a = t, b = 2t. Estimating the
integral of |F |2p through ζ and using (i) for that of p ln p we obtain

∫ 2t

t

∫

RN

|Dp(x, y, s)|2

p(x, y, s)
dy ds 6 c3 exp{c4t

−β/β−2}
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for x ∈ RN , t > 0, and suitable positive constants c3, c4. Inserting this
estimate in Theorem 5.2 and using (i) and Sobolev embedding we obtain

|Dp(x, y, s)| 6 c3 exp{c4t
−β/β−2}

for x, y ∈ RN , t 6 s 6 2t. Finally, (ii)–(iv) follow using these estimates in
Theorems 5.3–5.5, respectively.
R e m a r k 6.1. Observe that the assumption aij ∈ C2b (R

N) is not
needed for (i) and (ii).

R e m a r k 6.2. Let us point out a variant of Theorem 6.1. We as-
sume that aij ∈ C2b (R

N), F ∈ C2(RN) and there exist constants c > 0,
β > 2 such that

lim sup
|x|→∞

|x|1−βF (x) ∙
x

|x|
6 −c.

Assume, moreover, that |F (x)|+|DF (x)|+|D2F (x)| 6 c1(1+|x|2)γ1 for some
γ1, c1, c2 > 0. Then, for sufficiently large γ2 the following estimate holds:

p(x, y, t) + |Dp(x, y, y)|+ |D2p(x, y, t)|+ |∂tp(x, y, t)| 6 Ct
−σ(1 + |y|2)−γ2 ,

for x, y ∈ RN , 0 < t 6 1 and with a suitable σ depending on γ1, γ2. In fact,
the estimate for p is contained in Corollary 4.3, where the dependence of σ
on γ1, γ2 is explicitly stated. The corresponding bounds for the derivatives
of p can be obtained as in Theorem 6.1. We refrain from stating the explicit
dependence of σ in the general case since it does not seem to be optimal.

Finally, let us show that the transition semigroup T (∙) is differentiable
in spaces of continuous functions, under the assumption of Theorem 6.1. We
observe that in the case β = 2 the semigroup need not to be differentiable as
the example of the Ornstein–Uhlenbeck operator shows, see [18]. Moreover,
even when β > 2 the semigroup is not, in general, analytic, see [23]. Finally,
we point out that our methods allow one to prove the differentiability of the
semigroup without requiring that the drift F is a gradient.

Theorem 6.2. Under the assumptions of Theorem 6.1, the transition
semigroup T (∙) is differentiable on Cb(RN) for t > 0.

P r o o f. Let us fix 0 < a < T . By Theorem 6.1 we know that
|∂tp(x, y, t)| 6 c1 exp{−c2|y|β} for every a 6 t 6 T , x, y ∈ RN . Since
p(∙, y, ∙) ∈ C

1+α/2,2+α
loc (RN × (0,∞)), for every f ∈ Cb(R

N) and t > 0 the
function

T (t)f(∙) =
∫

RN
p(∙, y, t)f(y) dy

is differentiable with respect to the norm of Cb(R
N) and

d

dt
T (t)f(∙) =

∫

RN
∂tp(∙, y, t)f(y) dy.

Theorem 6.2 is proved.
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As an example, we obtain that the operator A = Δ − x|x|r ∙D, r > 0,
generates a differentiable semigroup in Cb(R). The same result is proved also
in [23, Proposition 4.4], where the proof was based on results on intrinsic
ultracontractivity of the Schrödinger operator proved in [9] and, therefore,
used the gradient structure of the drift.

7. Appendix. In this appendix we present a simple, purely analytical,
proof of the embeddings of the spaces H k,1(QT ), due to Krylov, see [13].
Krylov proves the above embeddings for the more general case of stochastic
parabolic Sobolev spaces. We also prove by the same method an embedding
for the spaces V k(QT ) which we used in Section 3. Finally, we prove an
estimate for the L∞-norm of solutions of certain parabolic problems.
We recall that H k,1(QT ) consists of all functions u ∈ W

1,0
k (QT ) with

∂tu ∈ (W
1,0
k′ (QT ))

′ and that, for k > 2, V k(QT ) is the space of all functions
u ∈W 1,0

k (QT ) such that there exists C > 0 for which
∣
∣
∣
∣

∫

QT

u∂tφdx dt

∣
∣
∣
∣ 6 C

(

‖φ‖Lk/(k−2)(QT ) + ‖Dφ‖Lk/(k−1)(QT )

)

for every φ ∈ C2,1c (QT ). We denote by ‖∂tu‖k/2,k;QT the best constant C such
that the above estimate holds. Note that if a smooth function belongs to
H k,1(QT ) or to V k(QT ), then the estimate for ∂tu implies that u vanishes
at times 0 and T .

Lemma 7.1. There exist linear, continuous extension operators
E1: H k,1(QT )→H k,1(RN+1) and E2: V k(QT )→ V k(RN+1).

P r o o f. The proof is easily achieved using standard reflection argu-
ments with respect to the variable t.

Lemma 7.2. The restrictions of functions in C∞c (R
N+1) to QT are

dense in H k,1(QT ) and in V k(QT ).

P r o o f. If u ∈ H k,1(QT ) we consider v = E1u ∈ H k,1(RN+1). By
standard arguments involving convolutions and multiplications by cut-off
functions, we may approximate v with smooth functions with compact sup-
port in the norm of H k,1(RN+1), hence u. The proof for V k(QT ) is similar.

Theorem 7.1. (i) If 1 < k < N + 2, then H k,1(QT ) is continuously
embedded in Lr(QT ) for 1/r = 1/k − 1/(N + 2).
(ii) If k = N + 2, then H k,1(QT ) is continuously embedded in L

r(QT )
for N + 2 6 r <∞.

(iii) If k > N +2, then H k,1(QT ) is continuously embedded in C0(QT ).

P r o o f. By Lemma 7.2 it is sufficient to establish the estimate

‖u‖Lr(QT ) 6 C‖u‖H k,1(QT )

for every u ∈ C∞c (R
N+1), with C independent of u, where r is as in (i), (ii)

or r =∞ in case (iii).
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We consider the fundamental solution G of the operator ∂t−Δ in RN+1.
We have

G(x, t) =





(4πt)−N/2 exp

{

−
1

4t
|x|2

}

, t > 0,

0, t 6 0.

Let u ∈ C∞c (R
N+1), ψ ∈ C∞c (QT ) and consider φ = G∗ψ. The function φ be-

longs to C2(RN+1) and satisfies ∂tφ−Δφ = ψ, see, e.g., [11, Theorem 8.4.2].
Since ψ has support in RN× [0, T ], then G∗ψ = GT ∗ψ, where GT = Gχ[0,T ].
By a straightforward computation one sees that GT ∈ Ls(RN+1) for 1 6 s <
(N + 2)/N and DGT ∈ Ls(RN+1) for 1 6 s < (N + 2)/(N + 1). Young’s
inequality then yields ‖φ‖W 1,0

s (QT )
6 c1‖ψ‖L1(QT ) for s < (N + 2)/(N + 1).

Since k > N + 2, it follows that k′ < (N + 2)/(N + 1) and we get
∣
∣
∣
∣

∫

QT

uψ dx dt

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

QT

u(∂tφ−Δφ) dx dt
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

QT

(u∂tφ+Du ∙Dφ) dx dt
∣
∣
∣
∣

6 c2‖u‖H k,1(QT )‖φ‖W 1,0

k′
(QT )

6 c3‖u‖H k,1(QT )‖ψ‖L1(QT ).

This proves (iii).
In order to prove (ii) we fix N + 2 < r < ∞ and choose 1 < s <

(N + 2)/(N + 1) such that 1/k′ = 1/s + 1/r′ − 1. Young’s inequality then
yields ‖φ‖W 1,0

k′
(QT )

6 c1‖ψ‖Lr′ (QT ), hence

∣
∣
∣
∣

∫

QT

uψ dx dt

∣
∣
∣
∣ 6 c‖u‖H k,1(QT )‖ψ‖Lr′ (QT )

and (ii) is proved.
To prove (i) we use the estimate ‖φ‖W 2,1

r′
(QT )

6 c‖ψ‖Lr′ (QT ) (see [15,

Theorem 9.2.3]) and the embedding W 2,1
r′ (QT ) ⊂ W 1,0

k′ (QT ) (see [15,
Lemma II.3.3]) to conclude as before. Theorem 7.1 is proved.

A closer look at the above proof shows an embedding of the space
V k(QT ), used in Section 4.

Theorem 7.2. If k > N + 2, then V k(QT ) is continuously embedded
in C0(QT ). Moreover, ‖u‖L∞(QT ) 6 C(‖Du‖Lk(QT ) + ‖∂tu‖k/2,k;QT ).

P r o o f. As above we may assume that u ∈ C∞c (R
N+1). Choose φ, ψ

as in the above theorem. Then
∣
∣
∣
∣

∫

QT

uψ dx dt

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

QT

u(∂tφ−Δφ) dx dt
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

QT

(u∂tφ+Du ∙Dφ) dx dt
∣
∣
∣
∣

6

(

‖Du‖Lk(QT ) + ‖∂tu‖k/2,k;QT

)(

‖Dφ‖Lk/(k−1)(QT ) + ‖φ‖Lk/(k−2)(QT )

)

6 C

(

‖Du‖Lk(QT ) + ‖∂tu‖k/2,k;QT

)

‖ψ‖L1(QT )

by the above estimates for φ, since k/(k−1) < (N+2)/(N+1) and k/(k−2) <
(N + 2)/N . Theorem 7.2 is proved.
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We need the following estimate of the sup-norm of solution of parabolic
problems.

Theorem 7.3. Let k > N + 2, v ∈ Lk(QT ), w ∈ Lk/2(QT ) and assume
that u ∈ Lk(QT ) satisfies

∫

QT

u(∂tφ+A0φ) dx dt =

∫

QT

(v ∙Dφ+ wφ) dx dt (7.1)

for every φ ∈ C2,1c (QT ). Then u ∈ V
k(QT ) and

‖u‖L∞(QT ) 6 C1‖u‖V k(QT ) 6 C2(‖v‖Lk(QT ) + ‖w‖Lk/2(QT )),

where C1, C2 depend on N, T, k, and the C
1
b -norm of aij.

P r o o f. S t e p 1. First we show that

‖u‖Lk(QT ) 6 C(‖v‖Lk(QT ) + ‖w‖Lk/2(QT )). (7.2)

For φ ∈W 2,1
k′ (QT ), Sobolev embedding gives

‖φ‖Lk/k−2(QT ) 6 C‖φ‖W 2,1

k′
(QT )

, (7.3)

since k > N + 2 and 1 − 1/k − 2/(N + 2) < 1 − 2/k < 1 − 1/k. As a
consequence, since u ∈ Lk(QT ), by approximation, (7.1) holds if φ belongs
to W 2,1

k′ (QT ). Let us fix ψ ∈ C
∞
c (QT ). Using [15, Theorem 9.2.3] we choose

now π ∈W 2,1
k′ (QT ) such that

{
∂tφ+A0φ = ψ in QT ,

φ(x, T ) = 0, x ∈ RN .

We have also ‖φ‖W 2,1

k′
(QT )

6 C‖ψ‖Lk′ (QT ), where C depends on k, T , and the

coefficients (aij). Therefore, inserting this φ in (7.1) and using (7.3), we find
that ∣

∣
∣
∣

∫

QT

uψ dx dt

∣
∣
∣
∣ 6 C(‖v‖Lk(QT ) + ‖w‖Lk/2(QT ))‖ψ‖Lk′ (QT )

and (7.2) follows.
S t e p 2. We have

∫

QT

u(∂tφ+A1φ) dx dt =

∫

QT

(g ∙Dφ+ wφ) dx dt,

where A1 =
∑
i,j aijDij and gi = vi + uDi(

∑N
j=1 aij), and therefore

∣
∣
∣
∣

∫

QT

u(∂tφ+A1φ) dx dt

∣
∣
∣
∣ 6 C

[
(‖u‖Lk(QT ) + ‖v‖Lk(QT ))‖Dφ‖Lk/(k−1)(QT )

+ ‖w‖Lk/2(QT )‖φ‖Lk/(k−2)(QT )
]
.
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Replacing φ by its difference quotients with respect to the variable x we
obtain as in Lemma 3.1
∣
∣
∣
∣

∫

QT

τhu(∂tφ+A1φ) dx dt

∣
∣
∣
∣ 6 C

[
(‖u‖Lk(QT ) + ‖v‖Lk(QT ))‖φ‖W 2,1

k/(k−1)
(QT )

+ ‖w‖Lk/2(QT )‖Dφ‖Lk/(k−2)(QT )
]
.

By Sobolev embedding ‖Dφ‖Ls(QT ) 6 C‖φ‖W 2,1

k/(k−1)
(QT )

if 1/s = 1 − 1/k −

1/(N + 2). Since k/(k − 1) < k/(k − 2) < s because k > N + 2, we can
estimate the Lk/(k−2)-norm of Dφ with its W 2,1

k/(k−1)-norm thus obtaining

∣
∣
∣
∣

∫

QT

τhu(∂tϕ+A1φ) dx dt

∣
∣
∣
∣ 6 C

(
‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖Lk/2(QT )

)

×‖φ‖W 2,1

k/(k−1)
(QT )

.

We approximate φ in W 2,1
k/(k−1)(QT ) with a sequence of functions ϕn ∈

C1,2c (QT ). Since u ∈ L
k(QT ), writing the above inequality for φn and letting

n→∞ we see that it holds for φ.
Acting as above we now choose φ ∈W 2,1

k′ (QT ) such that

{
∂tφ+A1φ = |τhq|k−2τhu, in QT ,

φ(x, T ) = 0, x ∈ RN ,

and ‖φ‖W 2,1

k′
(QT )

6 C‖|τhu|k−1‖Lk′ (QT ). This yields u ∈ W 1,0
k (QT ) and

‖Du‖Lk(QT ) 6 C(‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖Lk/2(QT )). Now we treat the
time derivative. We have

∫

QT

u∂tφdx dt =

∫

QT

(∑

i,j

aijDiuDjφ+ v ∙Dφ+ wφ
)

dx dt

and hence, using the above estimates,

∣
∣
∣
∣

∫

QT

u∂tφdx dt

∣
∣
∣
∣ 6 C

[
(‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖Lk/2(QT ))‖Dφ‖Lk/(k−1)(QT )

+ ‖w‖Lk/2(QT )‖φ‖Lk/(k−2)(QT )
]
.

Then u ∈ V k(QT ) and hence Theorem 7.2 yields u ∈ L∞(QT ) and

‖u‖L∞(QT ) 6 C
(

‖Du‖Lk(QT ) + ‖∂tu‖k/2,k;QT

)

6 C

(

‖u‖Lk(QT ) + ‖v‖Lk(QT ) + ‖w‖Lk/2(QT )

)

6 C

(

‖v‖Lk(QT ) + ‖w‖Lk/2(QT )

)

,

(we have used (7.2) in the last inequality). Theorem 7.3 is proved.
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14. Krylov N.V., Röckner N.V. Strong solutions of stochastic equations with singular
time dependent drift. — Probab. Theory Related Fields, 2005, v. 131, p. 154–196.

15. Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилиней-
ные уравнения параболического типа. М.: Наука, 1967, 736 с.

16. Lieberman G.M. Second Order Parabolic Differential Equations. River Edge: World
Scientific, 1996, 439 p.

17. Lunardi A. Analytic Semigroups and Optimal Regularity in Parabolic Problems.
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