
Math-Net.Ru
Общероссийский математический портал

A. H. Ibrahim, M. A. Boudref, L. Badis, Кластериза-
ция сетей с использованием алгоритма поиска ко-
сяков рыб, Информатика и автоматизация, 2024,
выпуск 23, том 5, 1367–1397

DOI: 10.15622/ia.23.5.4

Использование Общероссийского математического портала Math-

Net.Ru подразумевает, что вы прочитали и согласны с пользователь-

ским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 18.191.200.151

4 января 2025 г., 01:59:03



 DOI 10.15622/ia.23.5.4 
 

A.H. IBRAHIM, M.A. BOUDREF, L. BADIS  
CLUSTERING OF NETWORKS USING THE FISH SCHOOL 

SEARCH ALGORITHM 
 
Ibrahim A.H., Boudref M.A., Badis L. Clustering of Networks Using the Fish School Search 
Algorithm. 

Abstract. A network is an aggregation of nodes joined by edges, representing entities and 
their relationships. In social network clustering, nodes are organized into clusters according to 
their connectivity patterns, with the goal of community detection. The detection of community 
structures in networks is essential. However, existing techniques for community detection have 
not yet utilized the potential of the Fish School Search (FSS) algorithm and modularity 
principles. We have proposed a novel method, clustering with the Fish School Search 
algorithm and modularity function (FSC), that enhances modularity in network clustering by 
iteratively partitioning the network and optimizing the modularity function using the Fish 
School Search Algorithm. This approach facilitates the discovery of highly modular 
community structures, improving the resolution and effectiveness of network clustering. We 
tested FSC on well-known and unknown network structures. Also, we tested it on a network 
generated using the LFR model to test its performance on networks with different community 
structures. Our methodology demonstrates strong performance in identifying community 
structures, indicating its effectiveness in capturing cohesive communities and accurately 
identifying actual community structures. 

Keywords: clustering, fish school search algorithm, modularity function, network 
structures. 
 

1. Introduction. In network theory, a graph or network refers to a 
group of nodes linked through edges or lines, representing different entities 
and their relationships or interactions [1]. For example, in metabolic 
networks, nodes could represent biochemical compounds or enzymes, and 
edges could represent metabolic reactions or pathways [2]. In the case of the 
Internet, nodes could represent web pages or computers, and edges could 
represent hyperlinks or network connections [3]. The representation of a 
network is a graph G (V, E), where V refers to the set of nodes or vertices 
and E refers to the set of edges or links [4]. The number of vertices and 
edges determines the size of a graph. In the case of a social network, the 
size of the graph depends on the number of people in the network and their 
relationships or interactions [5]. In social network clustering, nodes are 
grouped into clusters based on their connectivity patterns, which are 
determined by the links or edges that connect them. This clustering process 
relies on community recognition, where a community refers to a group of 
nodes that are densely connected with only a few connections to nodes 
outside the community [6]. The objective of community detection is to 
identify clusters or communities of nodes within a network, where the nodes 
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within a community exhibit denser connections among themselves 
compared to nodes in other communities [7]. 

Clustering a social network can help us identify groups of 
individuals that are more closely connected, revealing social substructures 
such as cliques, subgroups, or communities. Understanding these 
substructures can provide insights into the dynamics of social interactions 
and help us identify influential individuals or groups within the network [8]. 
For example, recognizing communities and clusters can help identify groups 
of proteins that work together to perform specific functions in the cell [9]. 
In the case of a transportation network, clustering can help identify clusters 
of nodes that are more interconnected in traffic planning and routing [10]. 
Several methods can structure networks [11], including modularity-based 
methods [12], spectral clustering [13], hierarchical clustering [14], and 
modularity optimization [15, 16]. 

Maximizing modularity is a challenging task due to its 
computational intractability, as finding an optimal solution has been proven 
to be NP-complete [17]. Heuristic algorithms are often used, but they may 
not always produce the best partitions. Modularity maximization is a 
promising approach for community detection, aiming to maximize within-
community interconnectedness while minimizing between-community 
interconnectedness. 

Our main contribution is the enhancement of modularity in network 
clustering through the innovative application of the Fish School Search 
Algorithm [18, 19]. This algorithm, inspired by the collective behavior and 
intelligence of fish schools, serves as a powerful metaheuristic for 
navigating the complex landscape of community detection. By iteratively 
partitioning the network and judiciously pruning edges, our approach 
focuses on maximizing the modularity function [20], which quantifies the 
strength of the division of a network into modules or communities.  

The Fish School Search Algorithm's ability to simulate the dynamic 
and collaborative [21] search strategies of fish enables the discovery of 
highly modular community structures, thereby improving the resolution and 
effectiveness of network clustering. This method not only aligns with the 
principles of modularity optimization but also introduces a novel 
perspective to the field, leveraging natural processes to address 
computational challenges inherent in the task of community detection. 

In the clustering process, the modularity function serves as the 
objective function, assessing the quality of a clustering solution [22]. The 
proposed method works by initializing a population of fish, each 
representing a potential clustering solution. Until they reach an optimal 
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solution, the fish iteratively evaluate and update their solution based on the 
modularity function. 

The method was tested on well-known and unknown network 
structures and compared to other commonly used clustering methods [23]. 
The findings demonstrate the method’s superior performance in both 
modularity and computational efficiency. The paper is organized in a 
logical and easy-to-follow manner. The second section, titled Background 
and Related Works, is further divided into four subsections. The first 
subsection provides background on community detection and its 
importance. The second subsection discusses modularity and modularity 
maximization. The third subsection introduces the Fish School Search (FSS) 
algorithm and its use in the proposed network clustering method, while the 
fourth subsection reviews related works in the field. The third section 
presents the proposed approach, while the fourth section of the paper 
presents a performance assessment of our method. The fifth section 
discusses the results and their implications, and the sixth section concludes 
the study and suggests future work. 

2. Background and related works 
2.1. Community detection. Community detection in complex 

networks is the process of identifying clusters of nodes that share common 
properties, depicted as nodes and edges in a graph. These algorithms group 
nodes based on denser connections within groups compared to connections 
between groups. Communities can represent groups of individuals with 
shared interests and interactions within human society, and they can be 
identified in networks based on connection patterns [24]. 

Hierarchical clustering is a popular approach to community detection 
that builds a hierarchy of partitions either by merging smaller communities 
into bigger ones or by dividing larger communities into smaller ones based 
on similarity measures. Initially, each node is considered a separate 
community, and similarity measures between pairs of communities are 
calculated using factors such as shared neighbors or connection strength. 
The algorithm then merges the most similar communities iteratively, 
creating a hierarchical structure [25]. 

Hierarchical clustering allows flexible exploration of community 
structure at different granularity levels, ranging from broad to specific 
communities. This approach provides a comprehensive view of the 
network's community structure, enabling the analysis of nested communities 
and different levels of detail. The FSC proposed was developed to solve 
community detection problems by maximizing modularity, and is a widely 
recognized and commonly used approach for discovery communities in 
structure networks. It involves finding the split of the network into clusters 
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that maximize the modularity value, which is a measure of the quality of the 
division. 

2.2. Modularity. Modularity, a concept pioneered by [20], is a 
metric for assessing the efficacy of partitioning a graph into distinct 
communities. While its original formulation was designed for undirected 
graphs, subsequent research has broadened its applicability to encompass 
directed and weighted graphs [26 – 28]. The notion of modularity within a 
partition is expressed through a singular numerical measure (with a range 
reaching 1) used to evaluate the level of interconnectedness among 
components residing within communities, as opposed to the connections 
linking different communities together. A heightened positive modularity 
value indicates an enhanced organization of communities. 

Modularity maximization is a widely used approach in network 
analysis for resolving community detection problems. Modularity quantifies 
the quality of the community structure in a network by comparing the 
number of edges each community has to the number expected by chance. 
The goal of modularity maximization is to find a partition of nodes into 
communities that maximize the modularity score. This involves iteratively 
assigning nodes to communities and evaluating the change in modularity 
until no further enhancement can be performed.  

Modularity maximization has several advantages for resolving 
community detection problems. It is a flexible and scalable method that can 
be used in networks of various sizes and types. It can find the optimal division 
of the network into communities without prior knowledge of their number or 
size, allowing for an unbiased exploration of the community structure.  

Maximizing modularity to find the best partition of a network into 
communities is not feasible for large and complex networks due to the NP-
complete [29] nature of the problem. Several heuristic algorithms have been 
proposed to approximate the optimal solution. Despite its drawbacks, such 
as the resolution limit and high computational requirements, modularity 
maximization remains a popular and effective approach for community 
detection. The FSC performance will be evaluated by comparing the 
communities obtained using different algorithms with the ground truth and 
assessing the quality and reliability of community detection results through 
modularity scores. 

2.3. Artificial Fish School Search Algorithm. The study of 
collective behavior in decentralized, self-organized systems, encompassing 
both natural and artificial systems, falls within the realm of swarm 
intelligence [30]. The inspiration behind swarm intelligence stems from 
observing the collective behavior exhibited in natural societies, including 
the coordinated movements of birds, fish, ants, bees, termites, and other 
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species. This behavior emerges from the interactions of numerous 
individuals acting in unison. It is a form of distributed problem-solving in 
which a group of individuals cooperates to achieve a common goal [31]. 
Algorithm 1, known as Artificial Fish School Search (FSS) [32], is a prime 
example of swarm intelligence, drawing inspiration from the collective 
behavior observed in fish schools. The foundational algorithmic structure of 
the FSS optimization algorithm, as outlined in [32], is as follows: 

 
Algorithm 1. FSS optimization algorithm for community detection 

1.      Input: 
2.           Graph (G = (V, E)): The input graph with vertices (V) and edges (E). 
3.           Maximum Cycle Number: The maximum number of iterations for the 

algorithm. 
4.           Maximum CPU Time: The maximum allowed CPU time for the 

optimization process. 
5.     Output: 
6.           π: The resulting cluster assignment that maximizes modularity Q 
7.     Do 
8.          Attraction fish phase: 
9.                Move each fish towards the center of mass in the school. 
10.          Aggregation fish phase:  
11.                 Increase the step size of each fish 
12.          Movement fish phase: 
13.                  Move each fish based on its current position and step size. 
14.          Evaluate the modularity Q of each fish's cluster assignment       
15.          Save the best solution (cluster assignment π) found so far that maximizes 

Q. 
16.    While Cycle < Maximum Cycle Number and CPU Time < Maximum     CPU 

Time 
17.    Return the best cluster assignment π that maximizes modularity Q. 
 

The FSS algorithm is based on the idea that fish in a school move 
together, following some simple rules of behavior such as attraction, 
repulsion, and alignment. Within the domain of swarm intelligence, the 
Artificial Fish School Search (FSS) algorithm stands out as a notable 
exemplar. Taking cues from the coordinated behavior displayed by fish in 
their schools, the FSS algorithm derives its principles from this collective 
phenomenon. Like their aquatic counterparts, the algorithm envisions a 
scenario where virtual fish move in unison, guided by simple yet impactful 
behavioral rules encompassing attraction, repulsion, and alignment [33]. By 
harnessing these fundamental principles, the FSS algorithm aims to address 
complex problems through the power of collective intelligence. The process 
of fish locating their food typically unfolds in three stages: attraction, 
aggregation, and coordinated movement [34]. Initially, in the attraction 
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phase, fish employ a myriad of sensory cues, ranging from chemical to 
visual and auditory signals, to sense the availability of food. This phase 
often sees fish swimming in the direction of a positive chemical gradient, 
which is a reliable indicator of food's existence in the water. A plethora of 
fish species possess specialized sensory apparatus, like olfactory organs, 
that are exceptionally responsive to waterborne chemical cues. This 
sensitivity enables fish to discern even minor chemical traces released by 
potential food sources and subsequently follow this scent trail to discover 
food [35]. In the aggregation phase, fish may form schools or shoals to 
more efficiently locate and access the food source. In these groups, 
individuals may benefit from the presence of others in terms of increased 
feeding opportunities and protection from predators. In the last stage, 
referred to as the coordinated movement phase, fish within the collective 
meticulously adjust their movements to ensure the maintenance of group 
unity and synchronously approach the food source [36]. This often entails 
each fish attentively responding to their neighbors’ actions, facilitating a 
seamless and efficient group movement. The creation of collective wisdom 
in fish schools and other kinds of animal swarms heavily hinges on effective 
information exchange. Fish utilize diverse sensory signals to communicate 
and disseminate information among each other. This information exchange 
often involves the use of auditory, visual, and tactile cues [37]. Based on the 
concept of information exchange, the Artificial Fish School Search (FSS) 
algorithm can be divided into four stages to find maximum modularity. 
These stages include an initialization phase, where the FSS algorithm starts 
by randomly searching for a food source, which is considered a potential 
solution. Following the initialization phase, the process transitions into the 
individual swimming phase, which is analogous to conducting a local 
search in the current location of each fish or solution. Each instance of 
individual swimming generates a novel candidate solution, guided randomly 
and exhibiting distinct values. Upon the conclusion of the individual phase, 
an evaluation or update of the fitness function is performed. If there’s no 
enhancement in the fish’s position, it is assumed that this specific fish or 
solution remains static. Only those fish or solutions showing improvements 
in their fitness functions will transition to a new position. During the 
instinctive-collective phase, the overall positioning of the school of fish or 
set of solutions is adjusted, taking into consideration the alterations in the 
fitness function of each fish or solution from the prior iteration [38]. The 
process culminates with the collective-volitional phase, where the fish or 
solutions are moved if there has been an improvement. In algorithmic terms, 
this signifies a refinement of the solution for the optimization problem. If 
there hasn’t been an enhancement in the position of the entire school or set 
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of solutions compared to its previous position, it indicates the need for 
another round of food search or, in algorithmic terms, a return to the 
initialization phase. 

2.4. Related Works. Community detection is a rapidly evolving 
field, with researchers continuously proposing new and innovative 
approaches to identify and analyze community structures in complex 
networks. These approaches range from leveraging the concept of 
modularity to using artificial intelligence algorithms for clustering. In this 
review, we will discuss some notable works in the literature that focus on 
harnessing the power of modularity and artificial intelligence algorithms for 
community detection. 

The authors in [39] proposed a method for module partitioning in 
complex products using stable overlapping community detection and 
component allocation. 

It effectively handles intricate component correlations, 
demonstrating superiority over existing methods on a CNC grinding 
machine. The study model (CDFSE) [40] presents a dynamic model 
simulating fish school behavior to showcase the formation of larger, stable 
groups based on shared attributes. Additionally, the study [41] introduces a 
new network clustering method using the Bee Colony Algorithm and 
Modularity Function. This method involves iterative edge removal for 
network partitioning and uses the Bee Colony Algorithm to optimize the 
modularity function, revealing optimized clusters. The study [42] highlights 
encord's role in enhancing the efficiency and accuracy of medical data 
annotation in cancer subtype classification for identifying patient clusters, 
advancing targeted therapies, and biomarker discovery. Automated and 
collaborative features in encord improve annotation speed and consistency, 
benefiting AI-driven diagnostics and treatment planning. Lastly, the 
study [43] introduces an algorithm for disjoint communities in complex 
networks. It’s designed for undirected, unweighted graphs and uses cosine 
similarity for weight determination. It starts with individual nodes as 
communities and merges them based on modularity values. 

Our proposed approach, FSC-Fish School Clustering, addresses gaps 
in previous work by offering a comprehensive solution for community 
detection in unipartite, unweighted, and undirected networks. While 
existing methods often have limited scope, our approach widens their 
applicability by specifically targeting these types of networks. Moreover, 
we introduce a dynamic modeling aspect inspired by fish school behavior, 
enabling the formation of larger, stable groups based on shared attributes. 
To overcome optimization challenges, we integrate the Fish School Search 
Algorithm with the Modularity function, enhancing accuracy and efficiency 
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in community detection. Additionally, scalability concerns are addressed by 
leveraging the efficiency of the Fish School Search Algorithm, making our 
approach suitable for handling large-scale networks. By bridging these 
gaps, our proposal aims to advance the field of network analysis and 
provide more accurate and efficient tools for understanding complex 
network structures. 

The FSC provides a unique approach to optimization problems, 
drawing inspiration from natural phenomena. Its strengths lie in its 
adaptability and collective problem-solving power. It mimics fish school 
behavior to navigate complex search spaces effectively. However, it may 
lag behind modern network assembly methods in computational efficiency 
and scalability. While FSC is ideal for intricate problems requiring 
exploration, modern methods suit tasks demanding precision and large-scale 
network management. The choice between the two depends on the specific 
needs of the optimization challenge, balancing the strengths of FSC against 
the requirements for efficiency and control in network assembly. 

3. The proposed approach (FSC-Fish School Clustering). 
Hierarchical methods are clustering algorithms that can be either divisive or 
agglomerative. Agglomerative methods recursively merge clusters into 
larger clusters, while divisive methods recursively split clusters into smaller 
clusters. Divisive methods in community detection remove edges based on 
various criteria. For example, Edge Density [44] involves removing edges 
based on the density of connections to identify densely connected subgraphs 
as communities. Topological [45] measures utilize measures like centrality 
or clustering coefficient to determine edge importance; high centrality edges 
connecting communities are preserved, while low centrality edges are 
removed. Additionally, structural properties [46] involve removing edges 
that bridge distinct clusters to promote clearer separation between 
communities and identify internally connected communities. Some graph-
splitting methods create separate partitions by deleting edges that connect 
vertices with very high or very low weights [47]. In this study, we propose a 
novel network clustering approach, referred to as FSC, which uses the Fish 
School Search Algorithm and the modularity function introduced by [20]. 

In this study, we propose a novel network clustering method that 
focuses on identifying community structures in unipartite, unweighted, and 
undirected networks. We utilize the Fish School Search Algorithm to 
iteratively split the network and remove edges while maximizing the 
modularity function. During this splitting phase, the algorithm discovers a 
set of clusters that represent the community structure. This process is 
repeated iteratively until each cluster consists of a single vertex. FSC 
leverages the modularity function as an objective metric to measure the 
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power of the community structure. It guides the determination of the 
optimal number of network communities (clusters). By maximizing 
modularity, FSC aims to identify the community structure that best fits the 
given network. This is done through the use of the Fish School Search 
Algorithm and the Modularity function. For a graph 𝐺𝐺(𝑉𝑉,𝐸𝐸), our method 
identifies the most optimal community structure 𝜋𝜋 = {𝑐𝑐1, … , 𝑐𝑐𝑛𝑛𝑛𝑛}, where: 

− ⋃ 𝑐𝑐𝑖𝑖 = 𝑉𝑉𝑛𝑛𝑛𝑛
𝑖𝑖=1 , 

− 𝑐𝑐𝑖𝑖 ≠ ∅, 
− 𝑐𝑐𝑖𝑖 ∩ 𝑐𝑐𝑗𝑗 = ∅ 𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ j, 
− 𝑛𝑛𝑐𝑐: number of clusters. 
Modularity assesses the cohesion within different segments of a 

network by assigning a numerical value to each segment, known as a 
community structure. Modularity Q ranges between 0 and 1, where higher 
scores typically indicate better-defined partitions, while lower scores may 
imply less cohesive groupings. However, it's important to note that the 
quality of community structures can vary depending on the specific context. 
The modularity function is formulated around the comparison between the 
observed fraction, denoted as 𝑒𝑒(𝑐𝑐𝑖𝑖)of edges within communities, and the 
expected fraction, denoted as 𝑎𝑎(𝑐𝑐𝑖𝑖), of edges within the same communities. 
The modularity, represented as 𝑄𝑄, is calculated using the expression: 
 

𝑄𝑄 = ∑ 𝑒𝑒(𝑐𝑐𝑖𝑖) − 𝑎𝑎(𝑐𝑐𝑖𝑖)2𝑛𝑛𝑖𝑖 . (1) 
 

Consider an undirected, unweighted graph 𝐺𝐺, with 𝑛𝑛 vertices and 𝑚𝑚 
edges, and a partition denoted π = (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛𝑛𝑛). 

In this context, the modularity [48], can be expressed as follows: 
 

𝑄𝑄 = 1
(2𝑚𝑚)

∑ �𝐴𝐴[𝑣𝑣,𝑤𝑤] − 𝐾𝐾𝑣𝑣 𝐾𝐾𝑤𝑤
(2𝑚𝑚)

� 𝛿𝛿(𝑣𝑣,𝑤𝑤)𝑣𝑣𝑣𝑣 , (2) 
 
where 
 

𝛿𝛿(𝑣𝑣,𝑤𝑤) = �1  𝑖𝑖𝑖𝑖 𝑣𝑣 𝑎𝑎𝑛𝑛𝑎𝑎 𝑤𝑤 𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑛𝑛𝑏𝑏 𝑡𝑡𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑎𝑎𝑚𝑚𝑒𝑒 𝑐𝑐𝑏𝑏𝑚𝑚𝑚𝑚𝑐𝑐𝑛𝑛𝑖𝑖𝑡𝑡𝑐𝑐 
0                                     𝑏𝑏𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒                               

, 
 
where: 

− v, w – are vertices of G, 
− Kv,Kw – the degree of v and w which is the number of edges 

linked to each vertex, 
− m – total number of edges in the graph G, 
− 𝐴𝐴 – the adjacency matrix of the graph G. 
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The overarching framework of our algorithm designed to uncover 
community structures within networks is outlined as follows: 
 

Algorithm 2. FSC Algorithm 
1. Input: G = (V, E) – The input graph with vertices V and edges E. 
2. Result cluster: π, maximizes Q, the resulting cluster assignment cluster. 
3. Cluster ← G 
4. π ← Cluster 
5.  repeat 
6.  Set_Cluster ← π 
7.       for i ∈ | Set_Cluster | do 
8.            Cluster = Set_Cluster[i] 
9.            π' ← Fish School Search (Cluster) 
10.            Divide Cluster based on π' 
11.            Update π' 
12.      end for 
13.      until | π | ≥ |V| 
14.   return cluster that maximizes Q 
 

The FSC algorithm, utilizing the Artificial Fish School Search (FSS) 
algorithm, iteratively partitions a network to maximize modularity. Starting 
with the entire graph as a single cluster, the algorithm refines cluster 
assignments through FSS, aiming to enhance modularity within each 
cluster. This iterative process continues until each cluster comprises a single 
node, culminating in the selection of the assignment with the highest 
modularity. The resulting clusters represent distinct communities, offering 
flexibility to tailor the number of communities. Additionally, we construct a 
tree diagram to visually depict the hierarchical organization of communities, 
elucidating the structural composition of the network. 

4. Performance Assessment. We tested FSC on known and 
unknown network topologies. These networks are well-studied and have 
been used to benchmark other community detection algorithms. This means 
that we can compare our results to those of other algorithms and see how 
FSC performs. Networks tested include Karate Club, College Football, US 
Politics Books, and Dolphins. We additionally created a network using the 
Lancichinetti et al. random graph model, specifically designed to generate 
networks with desired community structures. This enables us to assess the 
performance of FSC on diverse network structures with varying 
communities. We conducted a comparative analysis of our approach against 
several established methods, such as: 

− The Infomap method [49] identifies community structure by 
minimizing the description length of a random walker's navigation, using 
iterative node agglomeration to achieve improved partitions. 
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− The label propagation method [50] efficiently detects 
communities in complex networks by assigning unique labels to nodes and 
adopting the most prevalent label among neighbors, but its accuracy may 
suffer due to its random nature and potential tie situations. 

− The Louvain method [51] optimizes modularity by iteratively 
reassigning nodes between communities to enhance network division 
strength. 

− The Fast Greedy method [52] utilizes community analysis by 
greedily enhancing modularity scores through the continuous merging of 
community pairs until maximal improvements are achieved. The Fish 
School Search (FSS) algorithm chosen for network clustering stands out due 
to its unique nature-inspired approach that simulates the behavior of a 
school of fish, enabling it to explore the search space more effectively and 
efficiently. Unlike other algorithms such as Infomap, Label Propagation, 
Louvain, and Fast Greedy, FSS does not require a predefined number of 
clusters, making it highly adaptable to various datasets. It further optimizes 
the modularity function, a unique feature that quantifies the strength of the 
division of a network into modules or communities, enhancing the 
resolution and effectiveness of network clustering. Demonstrating robust 
performance, FSS excels in identifying community structures in both well-
known and unknown network structures, making it a compelling, versatile, 
and reliable choice for network clustering. This dynamic modeling aspect, 
inspired by fish school behavior, forms larger, stable groups based on 
shared attributes, addressing gaps in previous work. It also integrates the 
Fish School Search Algorithm with the Modularity function, enhancing 
accuracy and efficiency in community detection and making it suitable for 
handling large-scale networks. In this part, we assess the performance and 
effectiveness of our method. This required two measures to compare and 
evaluate it against existing methods: normalized mutual information and 
computer-generated networks. 

4.1. Normalized Mutual Information (NMI). We can leverage the 
NMI scale to compare the outcomes of our approach with those of various 
community detection methods. It is a widely used measure of community 
quality and is a good predictor of human-annotated ground-truth 
communities. In [53] proposed the utilization of the Normalized Mutual 
Information (NMI) metric for the comparative assessment of community-
based screening techniques. NMI requires a confusion matrix 𝑀𝑀, where the 
rows in M indicate the real communities and the columns in M indicate the 
detected communities. Each element 𝑀𝑀 ,𝑀𝑀𝑖𝑖𝑗𝑗  in the matrix represents the 
count of nodes belonging to the actual community 𝑖𝑖 that are present in the 
discovered community j. This confusion matrix allows us to quantify the 
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overlap and agreement between the two sets of communities. The NMI 
measure employs information theory principles to evaluate the similarity 
between the partitions. It calculates the mutual information between the real 
and found communities, taking into account the distribution of nodes across 
the communities. The NMI measure captures the shared information and 
dependence between the partitions by considering the probabilities of nodes 
belonging to specific communities. The formula derived from data analysis 
principles [53] for measuring the likeness between two community 
structures A and B is as follows: 
 

I(A, B) =
−2∑ ∑ Mij log�MijM/Mi.M.j�

cB
j=1

cA
i=1

∑ Mi log(Mi/M)cA
i=1 + ∑ M.j log�M.j/M�cB

j=1
. (3) 

 
Here, 𝑐𝑐𝐴𝐴  reflects the number of actual communities, while 𝑐𝑐𝐵𝐵 

represents the number of discovered communities. The total of the elements 
in the row 𝑖𝑖 vector of the matrix 𝑀𝑀𝑖𝑖𝑗𝑗 is denoted by 𝑀𝑀𝑖𝑖, and the summation 
over column j is denoted by 𝑀𝑀.𝑗𝑗. When our method's community structure 
perfectly aligns with the actual community structure, 𝐼𝐼(𝐴𝐴,𝐵𝐵) achieves its 
maximum value of 1. This means that the two sets of clusters are a perfect 
fit, and the NMI value will be 1, indicating a complete match between the 
clusters. Conversely, if the detected communities have no resemblance to 
the actual communities in the network, the NMI value will be 0, signifying 
a complete lack of similarity. This means that the two sets of clusters have 
no connection or resemblance. When the discovered community structure is 
similar but not identical to the actual community structure, it means that the 
clusters share some commonalities while also having some differences; the 
NMI value will fall between 0 and 1, capturing the partial agreement 
between the two sets of clusters. 

4.2. Computer-Generated Networks. To validate the effectiveness 
of our method, we can employ computer-generated grids as a means of 
testing. These computer-generated networks possess a predetermined 
community structure, which renders them highly suitable for evaluating the 
accuracy and robustness of community detection algorithms. By leveraging 
these networks, we can thoroughly assess the performance and reliability of 
FSC in accurately identifying and uncovering community structures. To 
create networks with a community structure, we utilized the LFR model 
proposed by [54]. The LFR model is a widely used framework for generating 
networks with diverse properties, including power-law degree distributions, 
community structure, and even overlapping communities. In our study, we 
employed the LFR model to generate a network consisting of 128 nodes. The 
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degree exponent distribution was set to 2, determining the number of links per 
node. The community size distribution exponent was 3, governing the sizes of 
the communities. The average degree was 16, showing the ratio of the actual 
connections to the potential connections in a network. The network consisted 
of 3 communities, and the mixing parameter varied from 0.1 to 0.9, 
influencing the interconnectivity between communities. In our method, the 
fitness function is defined as the modularity function. We set 500 (the number 
of fish) as food sources and specified the maximum number of iterations as 
1000 for the optimization FSC. 

5. Results and Discussion. In this section, we present an elaborate 
examination of the authentic social networks utilized to assess the 
effectiveness of our method. We have tested our method on the following 
networks: The Zachary Club Network [55], American College 
Football [56], The Dolphin Social Network [57], The Book about US 
Politics Network [58] Facebook [59], Amazon [60], Les Miserable 
Network [61], The Jazz Collaboration Network [62], The HIV 
Network [63], and The Contiguous USA [64] Network. Table 1 summarizes 
the fundamental characteristics of real benchmark networks, including the 
number of nodes (|V|), the number of edges (|E|), the average degree  
(〈k〉), and whether the community structure (CS) is known or unknown. 
 

Table 1. Summarizes characteristics of Benchmark Social Networks 
Networks CS |V| |E| 〈k〉 Description 

Zachary Known 34 78 4.58 Derived from a 
university karate club. 

Football Known 115 613 10.66 Fall 2000 Division IA 
college games. 

Dolphin Known 62 159 5.12 62 New Zealand 
dolphins' interactions. 

Book Known 105 441 8.4 2004 election US 
politics book list. 

Facebook Unknown 4039 88234 18.02 Facebook social 
network dataset. 

Amazon Unknown 334863 925872 5.52 Amazon product co-
purchasing network. 

Miserable Unknown 77 245 6.36 Victor Hugo's character 
network. 

Jazz Unknown 198 2742 27.69 Jazz collaborations from 
1912-1940. 

HIV Unknown 40 41 2.05 Early HIV spread in 
USA contacts. 

USA Unknown 48 107 4.45 US shared border 
network with DC. 
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Table 2 presents a comparative analysis of the modularity metric for 
our proposed algorithm against four established algorithms. The modularity 
metric is calculated using the formula (2) (Section 3). 
In Table 3, we present two metrics: 

1. The number of clusters (|C|) is the number of clusters obtained 
after the iterative splitting process.  

2. The normalization mutual information (NMI) is a measure of 
similarity between the clusters obtained using formula (3) (See section 4.1). 
 

Table 2. Modularity for real networks with community structures 
Methods Q 

Karate Football Books Dolphins Facebook Amazon 
Infomap 0.37 0.60 0.52 0.52 0.05 0.82 
Label 
Propagation 0.37 0.57 0.47 0.51 0.65 0.78 
Louvain 0.41 0.60 0.52 0.52 0.68 0.92 
Fast 
Greedy 0.38 0.54 0.50 0.49 0.64 0.87 
FSC 0.40 0.64 0.54 0.52 0.72 0.94 

 
Table 3. NMI for real networks with community structures 

Methods Karate Football Books Dolphins Facebook Amazon 
|C| NMI |C| NMI |C| NMI |C| NMI |C| NMI |C| NMI 

Infomap 2 0.59 2 0.92 6 0.49 5 0.53 239 0.09 17296 0.1 
Label 
Propagation 2 0.1 10 0.83 3 0.48 4 0.47 15 0.18 22496 0.01 
Louvain 4 0.50 9 0.85 5 0.50 4 0.49 11 0.18 240 0.02 
Fast Greedy 3 0.69 5 0.65 3 0.53 3 0.41 25 0.1 1532 0.1 
FSC 2 0.87 7 0.1 3 0.60 4 0.81 150 0.74 260 0.1 

 
To evaluate the performance of our proposed algorithm, we 

conducted experiments in a controlled environment using the Python 
programming language. Our algorithm's code was developed from scratch, 
and after multiple executions, we recorded the best modularity value 
achieved. In contrast, the baseline algorithms were sourced from the igraph 
library, which is well-known for its comprehensive collection of network 
analysis tools. 

According to Table 2 and Table 3, FSC performed well, achieving 
high NMI and Q values. For example, on the Karate network, it detected 2 
clustering with an NMI of 0.87 and a Q value of 0.40. On the football 
network, it detected 7 clusters with an NMI of 0.1 and a Q value of 0.64. 
FSC achieved the highest or second-highest NMI and Q scores on all four 
networks, suggesting it is more effective than other methods considered. 
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FSC identified meaningful communities in the karate 
network (Figure 1) and detected three clusters in the network of books about 
US politics (Figure 2), with high modularity and NMI values indicating 
good performance. This provides insights into social dynamics. 
 

 
Fig. 1. FSC identifies 2 clusters in the Zachary club network structure 

 

 
Fig. 2. FSC identifies 3 clusters in the structure of the Books about US politics 
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We tested FSC on various unknown networks (Les Miserable, Jazz, 
HIV, USA, Facebook, and Amazon), as shown in Figure 3. 

 

 
a) Les Miserables network 

 

 
b) Jazz network 
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c) The HIV network 

 

 
d) The Contiguous USA network 
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e) Facebook network 

 

 
f) Amazon network 

 
Fig. 3. Compares FSC with different unknown networks: a) Les Miserable Network; 

b) Jazz Network; c) HIV Network; d) USA Network; e) Facebook Network; 
f) Amazon Network 
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FSC outperformed alternative approaches in several cases, although 
the specific networks where it excelled varied across different contexts. The 
FSC approach has demonstrated exceptional performance when applied to 
the intricate networks of Facebook and Amazon, exhibiting commendable 
quality in community detection. Its success in the Amazon network 
particularly stands out, showcasing unparalleled excellence with Q index 
values surpassing 0.90. Moreover, within the Facebook network, the FSC 
method has achieved a remarkable Q index value of 0.72, significantly 
eclipsing the performance of alternative algorithms, as illustrated in the 
accompanying Figure 4. Figure 4 shows our novel method for partitioning 
the contiguous USA into six clusters, providing a new way to analyze 
regional patterns. Using a mixing parameter denoted as μ, FSC accurately 
partitions the graph and uncovers clear communities (Figure 5). This value 
of μ = 0.1 is commonly used in community detection within networks 
because it indicates a clear community structure where only 10% of the 
edges are between different communities, while 90% of the edges are within 
the same community. The choice of μ = 0.1 provides stability and 
robustness for accurate detection and has been empirically successful in 
various network studies [65]. By using this mixing parameter value, the 
FSC algorithm can effectively identify distinct communities within the 
graph, as shown in Figure 5. 
 

 
Fig. 4. FSC identifies 6 clusters in the Contiguous USA network 
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Fig. 5. FSC detects computer-generated networks at μ = 0.1 

 
Figure 6 shows the FSC achievement of a maximum NMI value of 1 

when the mixing parameter ranges from 0 to 0.4, indicating the successful 
identification of robust and well-defined community structures. The 
connections within communities are denser compared to other methods, 
highlighting our approach's effectiveness. However, other methods like Fast 
Greedy and Louvain have NMI values less than 1, indicating accuracy in 
identifying true communities, particularly for mixing parameters between 0 
and 0.3. As the parameter exceeds 0.3, both Infomap and Label Propagation 
encounter challenges in defining distinct communities. Overall, as the 
mixing parameter increases, all methods face difficulties in accurately 
uncovering the true community structure. This decline in performance 
suggests that as more edges are added between different communities, 
making the network more interconnected, the task of identifying clear 
divisions and separating the network into distinct communities becomes 
increasingly challenging for all methods. According to [52], a network’s 
community structure is significant when its modularity exceeds 0.3. FSC 
observed a high modularity value, indicating a strong community structure 
and the ability to uncover densely connected and cohesive communities 
(Figure 7). The higher modularity values imply strong internal connections 
and fewer interconnections with other communities, indicating that FSC is 
effective in capturing meaningful community divisions and that the 
community structure is robust. 
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Fig. 6. How NMI varies with the level of community mixing 

 

 
Fig. 7. How modularity changes with the degree of inter-community mixing 
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6. Conclusion and future prospects. We introduce a new method 
for clustering networks that uses the Fish School Search Algorithm to 
enhance the modularity function. The approach iteratively removes edges 
from the network to maximize the modularity function. Through rigorous 
testing on both established and novel network structures, including those 
generated by the LFR model, our FSC methodology has demonstrated 
exceptional prowess in discerning cohesive communities and pinpointing 
authentic community structures. This breakthrough signifies a leap forward 
in network analysis, offering a potent tool for researchers and practitioners 
alike to navigate the ever-evolving landscape of networks. As we stand on 
the brink of this new horizon, it is clear that the FSC method is more than 
just an algorithm; it is a beacon that guides us toward a deeper 
comprehension of the networks that encompass and connect us all. The 
implications are vast, from enhancing social network analysis to optimizing 
transportation systems and even unraveling the collaborative networks 
within our very cells. The future of network clustering is bright, and it is our 
conviction that the FSC method will be at the forefront of this 
transformative journey. In future work, FSC can be extended to handle 
diverse network types, including directed, bipartite, or weighted networks. 
Additionally, research can explore alternative optimization algorithms or 
modularity functions to enhance FSC's performance in identifying 
community structures. Incorporating side information, such as node 
attributes or interactions with other nodes, is also a promising avenue for 
improvement. 
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А.Х. ИБРАГИМ, М.А. БУДРЕФ, Л. БАДИС 
КЛАСТЕРИЗАЦИЯ СЕТЕЙ С ИСПОЛЬЗОВАНИЕМ 

АЛГОРИТМА ПОИСКА КОСЯКОВ РЫБ 
 

Ибрагим А.Х., Будреф М.А., Бадис Л. Кластеризация сетей с использованием 
алгоритма поиска косяков рыб. 

Аннотация. Сеть представляет собой совокупность узлов, соединенных ребрами, 
которые представляют сущности и их взаимосвязи. В кластеризации социальных сетей 
узлы организованы в кластеры в соответствии с их шаблонами соединений с целью 
обнаружения сообществ. Выявление структур сообществ в сетях является важным. 
Однако существующие методы обнаружения сообществ еще не использовали потенциал 
алгоритма поиска косяков рыб (FSS) и принципов модулярности. Мы предложили новый 
метод, основанный на кластеризации с использованием алгоритма поиска рыбной 
школы и функции модулярности (FSC), который улучшает модулярность в 
кластеризации сети путем итерационного разбиения сети и оптимизации функции 
модулярности. Этот подход облегчает обнаружение высокомодулярных структур 
сообществ, улучшая разрешение и эффективность кластеризации сети. Мы 
протестировали FSC на известных и неизвестных структурах сетей. Также мы 
протестировали его на сети, сгенерированной с использованием модели LFR, чтобы 
проверить его производительность на сетях с различными структурами сообществ. Наша 
методология демонстрирует высокую эффективность в выявлении структур сообществ, 
что указывает на ее способность эффективно захватывать сплоченные сообщества и 
точно определять фактические структуры сообществ.  

Ключевые слова: кластеризация, алгоритм поиска косяков рыб, функция 
модульности, сетевые структуры. 
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