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Let A(n, a, y) denote a specific weighted average of different zeros of fn(x) − x for all prime numbers
p ≤ y, where f(x) = xp + ax ∈ Fp[x], a �= 0, and fn denotes the n-fold composition of f by itself. If
a = 1, then A(n, a, x) → 0 as x → ∞, and if a > 1, then A(n, a, x) → 1 as x → ∞. We also discuss
a method for counting the number of linear factors of a polynomial whose zeros are n-periodic points
of f(x) ∈ Z[x] by using a theorem of Frobenius. Finally, we obtain some results in the monomial case
over p-adic numbers by using this method.

1. INTRODUCTION

Over the last ten to fifteen years, the theory of dynamical systems over p-adic numbers or
finite fields has grown considerably (see, for instance, Arrowsmith and Vivaldi [2], Batra and
Morton [3, 4], Benedetto [5, 6], Khrennikov [10], Khrennikov and Nilsson [11], Lubin [13], Nils-
son [16–18], Nyqvist [19], Vivaldi and Hatjispyros [23], and Vivaldi [24]). A discrete dynamical
system can be described by iterations of a mapping. The periodic points of such a system give us
information about its long-time behavior.

In this paper, we consider discrete polynomial dynamical systems over both finite fields and
p-adic numbers. Let f(x) = xp + ax ∈ Fp[x] and let N(n, p, a) denote the number of different zeros
of fn(x) − x in the algebraic closure Fp of Fp. In this paper, we prove that the average

1
π(x)

∑
p≤x

1
pn

N(n, p, a)

approaches 1 as x approaches infinity when a > 1. If a = 1, then we conclude that the average
approaches zero instead.

We also calculate the average number of periodic points of a dynamical system generated by a
polynomial f(x) ∈ Z[x] in the finite fields Fp for all prime numbers p. This is done by counting linear
factors of a certain polynomial related to f(x) and using a theorem of Frobenius. This theorem
connects the periodic points in Fp to the Galois group of a polynomial.

For monomial f(x), the average value was computed in Nilsson [17, 16] and Khrennikov and
Nilsson [11], using a sort of a probabilistic method. We will obtain the same result in this paper.

2. THE NUMBER OF PERIODIC POINTS

Let f(x) ∈ K[x], where K is a field, be a monic polynomial of degree greater than 1. By fn(x),
we denote the n-fold composition of f(x) with itself. An element α with the property f r(α) = α
for some positive integer n is called an n-periodic point. If n is the smallest such integer, then n is
called the period of α, or we say that α is a primitive n-periodic point.
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PERIODIC POINTS OF p-ADIC DYNAMICAL SYSTEMS 211

Let p be a prime number. In this section, we will study the polynomial

f(x) = xp + ax ∈ Fp[x], (1)

where a �= 0. Let N(n, p, a) denote the number of different n-periodic points of f in Fp, the algebraic
closure of Fp. Hence, N(n, p, a) is equal to the number of different zeros of fn(x) − x. Let ordp(a)
denote the smallest positive integer c such that ac ≡ 1 (mod p).

Theorem 2.1 (Batra and Morton [3]). If ordp(a) divides n, then fn(x) − x is a pth power.
Also, if (n, p) = 1, then fn(x)−x = g(x)p, where g has distinct zeros. If ordp(a) does not divide n,
then fn(x) − x has no multiple factors.

By the theorem above, it follows that N(n, p, a) = pn if ordp(a) � n, that N(n, p, a) = pn−1 if
ordp(a) | n and (n, p) = 1, and that N(n, p, a) ≤ pn−1 if ordp(a) | n and (n, p) > 1. Set

A(n, a, x) =
1

π(x)

∑
p≤x

1
pn

N(n, p, a),

where π(x) is the number of primes p less than or equal to x and the sum is taken over all these
primes p.

First, let a = −1. If n is odd, then N(n, p,−1) = pn since ordp(−1) = 2. Therefore, we have

A(n,−1, x) =
1

π(x)

∑
p≤x

1 =
π(x)
π(x)

= 1.

If n is even, then N(n, p,−1) ≤ pn−1, and the prime number theorem (see, for instance, Apostol [1])
gives

A(n,−1, x) ≤ 1
π(x)

∑
p≤x

1
p

=
1

π(x)

(
log log x + C + O

(
1

log x

))

∼ log x

x

(
log log x + C + O

(
1

log x

))

=
1
x

log x · log log x + C
log x

x
+ O

(
1
x

)
,

where C is the constant

1 − log log 2 +

∞∫
2

O(1)
t log2 t

dt.

Suppose that g and h are real-valued functions that satisfy h(x) → B < ∞ as x → ∞ and
g(x) ∼ h(x), i.e., limx→∞ g(x)/h(x) = 1; then,

lim
x→∞

(g(x) − h(x)) = lim
x→∞

h(x)
(

g(x)
h(x)

− 1
)

= B · 0 = 0.

Hence, it follows that A(p,−1, x) → 0 as x → ∞.
Theorem 2.2. If a = 1, then A(n, a, x) → 0 as x → ∞. If a > 1, then A(n, a, x) → 1 as

x → ∞.
Proof. If a = 1, then ordp(a) = 1 and A(n, 1, x) → 0 as x → ∞ by the same argument as in

the case when a = −1 and n is even. Now, suppose that a > 1. If p divides a, then f(x) = xp and
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212 M. NILSSON, R. NYQVIST

fn(x) − x = xpn − x, which has no multiple zeros. Hence, N(n, p, a) = pn in this case. Observe
that ordp(a) is not defined if p divides a. Therefore,

∑
p≤x

1
pn

N(n, p, a) =
∑
p|a
p≤x

1 +
∑
p≤x

ordp(a)�n

1 +
∑
p≤x

ordp(a)|n
(n,p)=1

1
p

+
∑
p≤x

ordp(a)|n
(n,p)>1

O

(
1
p

)
. (2)

The first and the fourth sums on the right-hand side in (2) are finite. Also, the third sum is finite.
To see this, set c = ordp(a). We have ac > p, which is equivalent to log ac > log p, i.e.,

c >
log p

log a
= loga p.

Hence, for all primes p such that loga p > n, we have ordp(a) > n and, therefore, also ordp(a) � n.
This proves that the third sum on the right-hand side in (2) is also finite. The second sum is then
asymptotic to π(x), which proves that A(n, a, x) → 1 as x → ∞. �

3. THE AVERAGE OF LINEAR FACTORS

The results in this and the following sections are also presented in Khrennikov, Nilsson, and
Nyqvist [12]. Let f(x) ∈ Z[x] be a monic polynomial of degree greater than 1. Define

Φr,f(x) =
∏
d|r

(
fd(x) − x

)µ(r/d)
, (3)

where µ is the Möbius function, that is, µ(1) = 1 and µ(n) = 0 if the integer n has a square
factor, otherwise µ(n) = (−1)k, where k is the number of distinct primes in the factorization of n.
If f(x) ∈ K[x], then Φr,f(x) ∈ K[x] for all r and any field K (see Theorem 2.5 in Morton and
Patel [15]). In the same article, the following properties of Φn,f are shown:

1. If char K � r, then the formula ∏
d|r

Φd,f (x)

gives a factorization of f r(x) − x in K[x].
2. If α is a primitive r-periodic point of f , then Φr,f (α) = 0.
3. If char K � r, α is a primitive m-periodic point of f , where m < r, and Φr,f (α) = 0, then

(x − α)2 | Φr,f(x).
4. If char K � r and (x−α) is a multiple factor of fm(x)− x for m < r, then (x− α) � Φr,f (x).

Hence, if Φr,f(x) is separable over K, i.e., it has no multiple roots, then the zeros of Φr,f (x)
are all primitive r-periodic points of f . For more information about the properties of Φr,f , see also
Batra and Morton [3, 4] and Vivaldi and Hatjispyros [23].

Let g(x) ∈ Z[x] and define L(g, p) to be the number of linear factors of g(x) modulo p, where p
is a prime number. Let Pm be the set of the first m primes and define the average function

I(g) = lim
m→∞

1
m

∑
p∈Pm

L(g, p).

Let K be a field and f(x) ∈ K[x]. If α1, . . . , αn are the zeros of f(x) in some splitting field of f
over K, then the discriminant disc(f) of f is defined as

∏
i<j(αi − αj).
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PERIODIC POINTS OF p-ADIC DYNAMICAL SYSTEMS 213

4. CHEBOTAREV’S DENSITY THEOREM

We are going to use the next theorem, by Frobenius, to calculate I(Φn,f ). In Pohst and Zassen-
haus [20] and Dummit and Foote [7], this method was described in detail.

Theorem 4.1 (theorem of Frobenius). Let f(x) ∈ Z[x]. Assume that f is monic and
disc f �= 0. Let G be the Galois group of f over Q. Then, the density of the set of primes for
which f has a given decomposition type n1, . . . , nt exists and is equal to 1/|G| times the number of
elements in G with the cycle pattern (n1, . . . , nt).

Chebotarev’s density theorem is a generalization of the previous theorem. An interesting article
about Chebotarev and these two theorems can be found in Stevenhagen and Lenstra [22].

Theorem 4.2 (Chebotarev’s density theorem). Let f(x) ∈ Z[x]. Assume that f is monic and
disc f �= 0. Let C be a conjugacy class of the Galois group G of f . Then, the set of primes p that
do not divide disc f and for which the Frobenius substitution σp belongs to C has density |C|/|G|.

Example 4.1. Let f(x) = x2. Then, Φ3,f (x) = x6 +x5 +x4 +x3 +x2 +x+1 and disc(Φ3,f ) =
(−1) · 75. Since Φ3,f (x) is the 7th cyclotomic polynomial, its Galois group is isomorphic to (Z/7Z)∗

(see, for example, Morandi [14]). Factoring Φ3,f (x) modulo p for the first 4000 primes p, excluding 7,
gives

The degree of the factors {6} {3, 3} {2, 2, 2} {1, 1, 1, 1, 1, 1}
Frequency 1345/4000 1329/4000 665/4000 661/4000

Using the left regular representation of the elements in (Z/7Z)∗, we see that the result in the table
above is close to the frequency of the cycle decomposition of the elements in (Z/7Z)∗. Since the left
regular representation of the elements in a group is an action on the group itself and the identity
in (Z/7Z)∗ is the only element that has fixed points under this action, we have I(Φ3,f ) = 1.

Example 4.2. Let f(x) = x2 − 2. Then, Φ3,f (x) = (x3 + x2 − 2x − 1)(x3 − 3x + 1) and
disc(Φ3,f ) = 34 ·72. Factoring Φ3,f (x) modulo p for the first 4000 primes p, excluding 3 and 7, gives

The degree of the factors {3, 3} {3, 1, 1, 1} {1, 1, 1, 1, 1, 1}
Frequency 1781/4000 1778/4000 441/4000

We can conclude that the Galois group of Φ3,f (x) is a group of nine elements. Hence, Gal(Φ3,f ) =
C3 × C3 since it is the only subgroup of S6 with nine elements (the second possible group C9

can be excluded since it contains elements of order 9, whereas S6 does not). Further, I(Φ3,f ) =
3 · 4/9 + 6 · 1/9 = 2.

Example 4.3. Let f(x) = x2 + 1. Then,

Φ3,f (x) = x6 + x5 + 4x4 + 3x3 + 7x2 + 4x + 5

and disc(Φ3,f ) = (−1) · 36 · 113. Factoring Φ3,f (x) modulo p for the first 4000 primes p, excluding 3
and 11, gives

The degree of the factors {6} {3, 3} {3, 1, 1, 1} {2, 2, 2} {1, 1, 1, 1, 1, 1}
Frequency 1356/4000 875/4000 879/4000 670/4000 220/4000

Hence, the Galois group Gal(Φ3,f ) contains 18 elements. There are five groups of cardinality 18:
C18, C6 × C3, D9, D3 × C3, and D3 ×ϑ D3.3 We can directly exclude the two groups C18 and D9

3Let G and H be groups with normal subgroups K and N , respectively, such that there is an isomorphism
ϑ : G/K → H/N . Then, the pullback G×ϑ H is the subgroup of G×H of elements (g, h) that satisfy ϑ(gK) = hN
(see Humphreys [9]). In our case, ϑ is the identity automorphism on the quotient D3/D′

3.
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214 M. NILSSON, R. NYQVIST

since they contain elements of order 9 and, therefore, are not subgroups of S6. The elements in the
remaining groups are only of order 1, 2, 3, and 6. But the group C6 ×C3 contains only one element
of order 2, which is at least two elements too few, and the group D3 ×ϑ D3 contains no elements of
order 6. Hence, Gal(Φ3,f ) = D3 × C3, and I(Φ3,f ) = 1.

In the last example, we were lucky since all the groups of cardinality 18 have different numbers
of cycle decomposition, and it is therefore easy to find the Galois group of Φ3,f . But it is known
that there exist infinitely many examples of nonisomorphic groups of the same cardinality such that
they contain the same number of elements of all cycle decompositions. Hence, in the general case,
the use of the Frobenius theorem to determine the Galois group of a polynomial is not practical.

5. PERMUTATIONS

Let X be a set and G be a group. An action of G on X is a map from G×X to X, denoted by
(g, x) �→ g · x, such that

(1) e · x = x for all x ∈ X, where e is the identity element in G;
(2) (g1g2) · x = g1 · (g2 · x) for all x ∈ X and all g1, g2 ∈ G.

Theorem 5.1. Let G and X be as above. For each element g in G, the function σg : X → X
defined as σg(x) = g · x is a permutation of X, i.e., it is a one-to-one function.

We will use different notations for the action, depending on G and X. In general, the dot
notation above will be used. However, if X = {1, 2, . . . , n} and g ∈ G is a permutation acting on X,
then we will write g(x) instead. An action of G on X is called transitive if, for each x1, x2 ∈ X,
there exists an element g ∈ G such that g · x1 = x2. Let X be a finite set and G be a group acting
on X. Let x ∈ X. The orbit of x is the set

Gx = {y ∈ X : g · x = y for some g ∈ G}.

The set of orbits forms a partition of X. Let g ∈ G and define

X〈g〉 = {x ∈ X : g · x = x}.

Thus, X〈g〉 is the set of all elements in X that are fixed under g.
Theorem 5.2 (Burnside’s lemma). The number of orbits in X under G is equal to

1
|G|

∑
g∈G

∣∣X〈g〉∣∣.

Let A(n) be the number of g ∈ G that have exactly n fixed points over X and define

F(G,X) =
|X|∑
n=1

n
A(n)
|G| .

The function F can be regarded as the average number of fixed points per element in G acting on X.
Example 5.1. Let X = {1, 2, 3, 4} and G = D4. Then,

F(D4,X) =
4∑

n=1

n
A(n)

8
= 1 · 0

8
+ 2 · 2

8
+ 3 · 0

8
+ 4 · 1

8
= 1 (4)

since the elements in the 4th dihedral group D4 have the following cycle patterns:

Cycle pattern (4) (2, 2) (2, 1, 1) (1, 1, 1, 1)

Number 2 3 2 1
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Theorem 5.3. The number of orbits in X under G is equal to F(G,X).
Proof. We have that A(n) is the number of sets X〈g〉 such that |X〈g〉| = n. Hence,

|X|∑
n=0

nA(n) =
∑
g∈G

∣∣X〈g〉∣∣,

and the theorem follows from Theorem 5.2. �
Theorem 5.4. Let f(x) ∈ Z[x] be monic and separable, G be the Galois group of f, and X

be the set of zeros of f . Then, I(f) = F(G,X), i.e., I(f) is equal to the number of orbits in X
under G.

Proof. It follows from Theorem 5.3 and the theorem of Frobenius (see Section 4). �
Corollary 5.5. If f(x) ∈ Z[x] is monic and irreducible, then I(f) = 1.
Proof. Let X be the set of roots of f(x). The action of the Galois group Gal(f), considered

as a permutation group, on X is transitive. Therefore, X contains only one orbit under Gal(f).
Hence, F(Gal(f),X) = 1, and the corollary follows from Theorem 5.4. �

Remark 5.1. We can also say how many times we will get a certain number of linear factors
modulo p of Φn,f (x). For instance, if Gal(Φn,f) = D4 and deg Φn,f = 4, then we cannot get one
linear factor, but we get two linear factors one time out of four (see Example 5.1).

6. THE MONOMIAL CASE

Let n be a positive integer. In this section, we will study the iterations of the monomial function
f(x) = xn ∈ F [x], where F = Q or F = Fp for p � nr − 1. (This guarantees that there exists a
primitive (nr − 1)th root of unity in the splitting field of xnr−1 − 1.)

Lemma 6.1. Let r ≥ 2. The polynomials Φr,f (x) over F are the products of cyclotomic
polynomials Ψd. For r = 1, we have

Φ1,f (x) = f(x) − x = x
∏

d|n−1

Ψd(x).

Proof. We know that f r(x) − x =
∏

d|r Φd,f (x) and that

f r(x) − x = x
∏

s|nr−1

Ψs(x),

where Ψs(x) is the sth cyclotomic polynomial. We will prove that all (linear) factors in a specific
Ψs(x) are factors in the same Φd,f (x). We will do this by showing that all the zeros of Ψs(x) have
the same primitive period. Let s0 | (nr − 1), α be a zero of Ψs0(x), and dα be the primitive period
of α. If β is another zero of Ψs0(x) with primitive period dβ such that dα ≥ dβ, then we have

fdβ(x) − x = x
∏

s|ndβ−1

Ψs(x).

Since fdβ(β) − β = 0, we have that s0 | ndβ − 1 and, therefore, fdβ (α) − α = 0. But we assumed
that α had a primitive period dα ≥ dβ. Hence, dα = dβ . �

Let g(x) ∈ F [x]. By T (g), we mean the number of irreducible factors in g(x) over F . For
f(x) = xn ∈ F [x], we have

T (f r(x) − x) =
∑
d|r

T (Φd,f (x)), (5)
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216 M. NILSSON, R. NYQVIST

and by the Möbius inversion (see, for example, Dummit and Foote [7]), we get

T (Φr,f (x)) =
∑
d|r

µ(r/d)T (fd(x) − x). (6)

Let m be a positive integer. By τ(m), we mean the number of positive divisors of m. In the case
F = Q, we have

T (f r(x) − x) = T ((xnr−1 − 1)x) = τ(nr − 1) + 1.

We have proved the following theorem.
Theorem 6.2. The number of irreducible factors of Φr,f (x) over Q is given by

T (Φr,f(x)) =
∑
d|r

µ(r/d)(τ(nd − 1) + 1).

Observe that if r ≥ 2, then we have

T (Φr,f (x)) =
∑
d|r

µ(r/d)τ(nd − 1) (7)

since
∑

d|r µ(r/d) = 0 if r ≥ 2.
When the Galois group of a polynomial Φr,f (x) acts on the set of zeros of Φr,f (x), the number

of orbits is equal to the number of irreducible factors of Φr,f (x).
Theorem 6.3. For r ≥ 2, we have

I(Φr,f ) =
∑
d|r

µ(d)τ(nr/d − 1).

We recognize this formula from Khrennikov and Nilsson [11], where it describes the mean value
of the number of r-periodic points of f(x) in p-adic fields (see Gouvêa [8] or Schikhof [21] for an
introduction to p-adic fields).

Let n ∈ Z+ and let f : Qp → Qp such that f(x) = xn. Let r ∈ Z+. Let now p be a prime
number such that p ≥ 3 and p � nr − 1. Since char Qp = 0, we can repeat the construction of the
polynomials Φr,f(x). Since the roots of Φr,f are roots of unity, we have the same number of roots
in Qp as in Fp. We have the following theorem.

Theorem 6.4. The number of linear factors in Φr,f(x) when we factorize over Qp is the same
as the number of linear factors when we factorize Φr,f(x) over Fp for p � disc(Φr,f (x)), p � nr − 1,
and p ≥ 3.

Therefore, we can also use Theorem 6.3 when we factorize over Qp. This is the same result as
in Khrennikov and Nilsson [11]. See also Nilsson [17] for a more probabilistic view of the number
of periodic points in p-adic fields.
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