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Abstract. The Residue Number System is a widely used non-positional number system. Residue Number
System can be effectively used in applications and systems with a predominant proportion of addition,
subtraction and multiplication operations, due to the parallel execution of operations and the absence of inter-
bit carries. The reverse conversion of a number from Residue Number System to positional notation requires
the use of special algorithms. The main focus of this article lies in introducing the new conversion method,
which incorporates Chinese Remainder Theorem, Akushsky Core Function and rank of number. The step-by-
step procedure of the conversion process is detailed, accompanied by numerical examples. The proof of the
relationship between the ranks of positional characteristics using the Chinese Remainder Theorem is presented.
Through careful analysis and comparison with existing transformation methods, it is concluded that the
presented approach takes on average 8 % less time than the Approximate Method.
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AHHoTanusi. CucteMa OCTaTOYHBIX KJIACCOB — 3TO PacHpPOCTPAHEHHAs! HETIO3UI[MOHHAsA CUCTEMA CUUCICHHUS.
CucteMa OCTaTOYHBIX KIAcCOB MOXKET 3(P(eKTHBHO HCIIONB30BAaThCA B NMPHIOKEHUSIX € Hpeodianaromei
Jloneit onepanuii CoKeH!s, BEIMUTAHHUS 1 YMHOXEHHsI O1aroapsi napauieIbHOMY BBIOJHEHHIO Oeparyii u
OTCYTCTBHIO OMTOBBIX caBuros. OOpaTHoe mpeoOpa3oBaHHME YHCIA M3 CHCTEMBI OCTaTOYHBIX KJIAcCOB B
TIO3UIIMOHHYIO CHCTEMY CUHMCIICHHS TpeOyeT UCIOIB30BaHMs CIEHAIBHBIX aIropuT™MOB. OCHOBHOE BHUMAHHE
B JIAHHOW CTaTbe YJIENCHO IPEACTaBICHUIO HOBOTO METOJa IpeoOpa3oBaHMs, KOTOPBIH HCIOJIb3yeT
Kuraiickyro Teopemy 00 ocraTkax, (GyHKIHIO siipa AKYIICKOTO U paHTr 4yucia. [1oqpoOHO omucaH anroputM
peoOpa3oBaHus, IPEACTABICHbI YUCIOBbIE MPUMEPEL. [IpencTaBieHo 10Ka3aTeIbCTBO CBA3M MEXKIY PaHTaMU
MO3UIMOHHBIX XapaKTEPUCTUK ¢ MoMombio Kuraiickoit Teopembl 00 octaTkax. B pesynprarte TIatensHOTO
aHaNM3a ¥ CPaBHEHUsS C CYLIECTBYIOIIMMH METOJaMHU IMpeoOpa3oBaHMsI CAENaH BBIBOJ, YTO MPEACTaBICHHBIH
MOAXOJ 3aHUMAeT B cpefHeM Ha § % MeHbIIIe BPEMEHH, 4eM NPUOIVKEHHBIH METOS.

KunroueBble ci10Ba: cucremMa ocTaTOUHBIX KiaccoB; Kuraiickast TeopeMa 00 ocTaTkax, IPHOIMKEHHBIH METOI;
GyHKUUS sapa AKYIICKOT0; HEMOAYJISIPHEIE OTIepalvy.
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YHCEN U3 CUCTEMBI OCTATOYHBIX KJIACCOB B MO3UIMOHHYIO cucteMy cumcienus. Tpymast UCIT PAH, Tom 36,
BoIIL 4, 2024 1., ctp. 117-132 (na anrnumiickom s3eike). DOI: 10.15514/ISPRAS-2024-36(4)-9.
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1. Introduction

In today's world, where computational systems play an increasingly significant role in various fields
of activity, the question of efficiently converting numbers between different numeral systems
becomes particularly relevant. One such system is the Residue Number System (RNS), which
provides unique capabilities for handling large numbers through parallel computations [1]. RNS is
applied in the following areas: blockchain [2], homomorphic encryption [3], digital signal and image
processing [4], neural networks [5].

However, there are cases where it is necessary to translate numbers from RNS to positional notation,
which is commonly used in most computational devices [6]. Efficient methods for converting
numbers from RNS to positional notation must be developed.

In [7] the authors introduced a technique based on the Chinese Remainder Theorem (CRT) and
employed optimized modular arithmetic operations to achieve faster conversions. The algorithm was
evaluated on a variety of RNS moduli sets and demonstrated significant improvements in conversion
time compared to previously known methods.

Chervyakov et al. [8] focused on developing a hybrid conversion method that combines RNS and
binary arithmetic to achieve more efficient conversions. The proposed method utilized operand
scanning techniques to identify patterns in the RNS representation and optimize the conversion
process. The authors demonstrated that their hybrid approach outperforms conventional conversion
methods in terms of both speed and hardware resource utilization.
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The article [9] focuses on hardware acceleration for RNS-to-decimal conversion using Field-
Programmable Gate Arrays (FPGAS). The authors designed a specialized hardware accelerator
capable of handling large-scale RNS numbers and converting them efficiently to decimal format.
The proposed FPGA-based implementation demonstrated substantial speedup compared to
software-based conversion methods, making it suitable for real-time applications.

In [10-11] proposed energy efficient conversion algorithms which minimizes the energy
consumption in the process of number conversion and number sign determination. By optimizing
the use of resources and considering the power constraints of the base equipment, the proposed
methods provide significant energy savings compared to conventional conversion methods.
Advances in this area have paved the way for improved performance, reduced power consumption
and increased fault tolerance, making RNS a more attractive option in various domains [12].
However, further research is still warranted to explore new techniques and optimizations that can
further enhance the conversion process and maximize the potential of RNS in modern computing
systems.

This paper researches methods of converting numbers from RNS to the positional notation. The
main methods are the CRT based method, the Interval Method, the Mixed Radix Conversion (MRC)
method, the Diagonal Function (DF) method and the Approximate Method.

The purpose of this paper is to present a high-speed method for converting numbers from RNS to
positional notation based on the use of Akushsky core function and number rank.

The paper is organized as follows. In Section 2, we give a brief overview of the Residue Number
System. In Section 3, various techniques for converting numbers from RNS to positional notation
are described. Section 4 deals with performance evaluation. Finally, Section 5 concludes with some
final thoughts and considerations, including possible directions for future research.

2. Residue Number System

In RNS, numbers are expressed as sets of residues obtained by performing modular arithmetic
operations on those numbers with respect to a set of coprime moduli. The use of coprime moduli
ensures that there is no overlap or interference between the residues, allowing for parallel
computation of operations on individual residues [12].

The numerical representation in RNS utilizes the Chinese Remainder Theorem. Let {p;, p, .., Pn}
be mutually prime moduli, and P = p, - p, - ...* p, be their product. For each number X, there exists
a set of remainders x,x,,..,x,, Where 0 <x; <p;, and these remainders form the RNS
representation of X. Put differently, X exhibits congruence with the residues x; modulo p;.
Mathematically, this can be expressed as:

x; = X(mod p;). (D)
Thus, the number X is written in the RNS in the following form:
X = (xq, X3, ey X)), (2)

The computations for the reductions x; can be derived through the application of the following
equation:

X =X- [g] " Dis (3)

To perform operations on numbers in RNS, such as addition and multiplication, operations are
carried out independently on the remainders of each modulo. For example, calculations in RNS are
performed according to equation:

X*Y = (1 % Y1, X3 * Y2, o) Xy * Y)-
Here, the symbol * represents arithmetic operations, encompassing addition (+), subtraction (—), or
multiplication (-). Note that each modulo within the RNS is coprime with every other modulo,
satisfying the condition: (p;,p;) = 1, where i # j.
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3. Methods for Conversion Numbers from RNS to Positional Notation

3.1 Chinese Remainder Theorem

If the number X is given as residues (x, x5, ..., x,) from division by moduli {p,;, p,, ..., pn}, the
number X can be obtained from the equation based on the CRT [9]:

n
> e Ip,,
i=1

where P is the dynamic range, P, = z |Pi‘1|p_ is the multiplicative inversion of P; modulo p;, and
pi t

X =

n
= PP, =100 P, @)
P i=1

the operator |X|,, denotes the remainder of division X by p;, that is X mod p; and r(X) is the rank
of the number indicating how many times the range value must be subtracted from the resulting
number to bring it back into the range. Let us consider the process of number reconstruction as an
example.

Example 1. Given a system of bases p;, = 2,p, = 3,p; = 5,p4 = 7,ps = 11 the volume of the
dynamicrange P = 2-3-5-7-11 = 2310. Convert the number X = (1, 2,1, 4, 7) to a positional
system.

For this purpose, find the values of P;:

P P P
P, =—=1155,P, =—=770,P; = — = 462,
P1 |%) %]

P P
P, = — =330, P; = — = 320.

D4 (43
Subsequently, our focus turns to the computation of multiplicative inversion, a process entailing the
determination of « such that « - P; = 1(mod p;). Thus:

|P1_1|p1 = 1: |P2_1|p2 = 2! |P3_1|p3 = 31 |P4_1|p4 = 11 |P5_1|p5 =1L
With these values, we can calculate the value of the number X, according to the (4):
X =18411],3,0 = 1481.

3.2 Approximate Method Based on CRT

In [10, 13] a fractional, approximate representation of numbers based on CRT is proposed. Let us
divide (4) by P and obtain

n

X |P71,.
5= zxi-% = in K (5)
i=1 t 1 i=1 1
P, . - .
where k; = T”‘ constants of the chosen system, and the (5) gives a result within the interval

12
[0, 1). In this context, the process of determining the remainder with a larger modulo is replaced by
simply discarding the integer part, a simple operation to implement. To get the exact value, the
fractional part is multiplied by P. Consider a similar example.
Example 2. Given a system of bases p; = 2,p, = 3,p; = 5,p, = 7,ps = 11 and the number X =
(1,2,1,4,7). Find the constants k;:
1

by =2 ky =2 ks =2 ks =7, ks =
Then by (5) it is easy to find:
X 1 2 3 1 1 52 52
;— 1'E+2'§+1'§+4'7+7'H1— 1—051—1—05,

Hence
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X = 52 2310 = 1481
105 B '
Obviously, these calculations are simpler than in the CRT-based method, but in hardware
calculations the fractional coefficients k; can rarely be represented as finite fractions, so there is a
question of rounding accuracy. To perform approximate calculations the fractional coefficients k;
are multiplied by 2", where N signifies the count of binary digits located beyond the decimal point,
which provides the required level of calculation accuracy, each resulting number is rounded up to
the next integer and then all calculations are performed modulo 2%,

3.3 Mixed Radix Conversion Method

The Mixed Radix Conversion technique involves systematically translating a numerical
representation from RNS to Weighted Number System (WNS) through a sequential process
[14].This method involves subtracting moduli and multiplying by the multiplicative inversion of a
modulo. In WNS the translated number has the following form:

X =dy+dypy +d3pip + -+ dpDiP2 o Pro1 (6)

where 0 < d; < (p;+,; — 1). The parameters d; are known as WNS digits.
The WNS digits can be obtained from the ratios:

X
d= X=X puXy = ||,
P1

Xy
d, =X — X, "'p,, X =[—],
2 1 2 " P2, 42 "~ (7)
Xn-1
dn= n—l_Xn'pnIan[; ]
n

The conversion carried out according to the algorithm (7) contains 2(n — 1) only residual arithmetic
operations of subtraction and division without remainder, where is the number of moduli of the
system. Some modification of the considered algorithm can be proposed in the sense that the division
operation is replaced by the multiplication operation. For this purpose we pre-calculate constants
Tx; that satisfy the condition

TPk =1 (mod p;),(1 <k <j<n) (8)
It is noteworthy to highlight that the constants 7, ; are entirely dictated by the selected system of
bases, rendering them computable beforehand and amenable to storage in a designated table.
If the constants 7, ; are calculated, the calculation of the digits d; WNS by the algorithm (6) can be
rewritten in the form:

d; = x; (mod py),
d; = (x; — dq)7q, (Mod p,),
d; = ((x3 —dy)T3 — dz)Tz3 (mod ps) 9

dn = ( (xn - dl)Tln - dn—l)Tn—ln (mOd pn)-
The constants 7, ; are multiplication inverses for the numbers p;, modulo p;
Consider the algorithm (9) with an example.

Example 3. Let a system of bases p; = 2,p, = 3,p3 = 5,p4 = 7,ps = 11 be given. The volume of
the dynamicrange P =2-3-5-7-11 = 2310. Convert the number X = (1,2,1,4,7) to WNS.

We first find the constants t,;. For convenience, we write the constants 7, ; as a matrix k x j:
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0 2 3 4 6
0 0 2 5 4
0 0 0 3 9
0 0 0 0 8
Now run the algorithm (9) and write the results in Tab. 1

Table 1. Algorithm of the MRC method.

. Moduli -
Actions Digits
pi=2 p:=3 Pz =5 Py =7 ps =11
1 2 1 4 7 _
X-d 1 1 1 1 1 d =1
1 0 3 6
X—-d ;
X —dy)y 0 2 3 4 6
2 0 5 3 _
X1~ dy 2 2 2 2 d =2
3 3 1
X, — ;
Xy — dy)1y; 0 2 5 4
1 1 4 _
XZ - d3 1 1 1 d3 —_ 1
0 3
X, — ;
Xy — d3)735 0 3 9
0 5 _
X3 — d4)T4j 0 55;
X4‘ d5 =7
Thus,

X =d; +dypy + d3pipy + duP1P2D3 + daD1D2D3 + dsP1D2P3Ps =
=1+42241-2-340-2-3:5+7-2-3-5-7 = 1481.

3.4 Interval Method

Sufficiently effective methods of converting numbers from RNS to positional representation is the
interval method, based on the interval characteristics of numbers. One of these characteristics is the
interval number [15].

Let RNS is given by a system of bases {p;, p,, ..., pn}, With the volume of the range P = [~ p;.
Choose a splitting modulo p; and split the given range into intervals by dividing P by the modulo

p;- Then the number of intervals ism = P; = 5, and the length of an interval is determined by the

modulo value. As a result, the value of any number X given in RNS on the chosen bases can be
determined by the interval number:

Iy = [X] (10)
X pil’
which contains the number X and by digit x; of the number X in the RNS modulo p;, i.e.
X =pilx+xi. (11)

Since (p;, P;) = 1, by Euler's theorem:

Pl.‘p(pi) =1 (mod p;), (12)
where ¢ (p;) is an Euler function. If p; is a prime number, then ¢(p;) = p; — 1.
Substituting (12) into (4) the number X can be written as
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n
X = Z Pi‘P(pi) X; (13)
i=1 P
To determine the interval number Ly, substitute (13) into (10):
n PPy —r(X)P
lX — =14 i ( ) ) (14)
pi
. . .. o) .. , . o) _
Since p; is a divisor of the numbers ly i+ P 1, P then
lX = lexl + lX2X2 + -+ anxn - TXP. (15)
P?a(pj) p?Pi)_
where lx,- =1 > ,(i#j)and lXj = -——— are constant coefficients defined by the base system.
Thus we have,
n +
+
be= ) sl (16)
i=1 ' P;
Substituting (16) into (11), we obtain a positional notation of the number X:
n +
+
lX = Z|lxixi|Pi Di + X;. (17)
i=1

P

It may be noted here that it is more appropriate to choose the largest modulo in the system as the
split modulo. In this case, modular operations are performed with a smaller modulo value.

We will illustrate this method with an example.

Example 4. Let a system of bases p, = 2,p, = 3,p3 = 5,p, = 7,ps = 11 be given. Convert the
number X = (1,2,1,4,7) to a positional notation. Let us choose ps = 11 as the splitting modulo,

then Py = pﬂ = 210, the interval number
5
5
+
Z'lxixi|21o
i=1 210

and the number X =psly+xs. Define I, Since ¢(p)=2-1=1 ¢(p,)=3-1=
2, p(p3)=5—-1=4, o(p,)=7—-1 =6, p(p,) =11 -1 =10, then

+

lX=

l 155" 105, 1 il 140, 1 462" 126
SR IEET T I N
3306|" 21010 — 1|*

- =301, = |—~| =109
e ‘ 11 210 s ‘ 11 210

Then Iy = |764|3,, = 210.
Thus, X = 134-11 + 7 = 1481.

3.4 Diagonal Function

There is another way of reconstructing the numbers in the literature [16, 17]. For RNS {pL D2 .. pn}
define the Sum of Quotients (SQ) parameter as
SQ=P,+P, +--+B, (18)
and the constants
k; = |_pi_1|SQ- (19)
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The diagonal function for a given number X = (x;, x5, ..., x,,) is defined as
D(X) = |x1k1+ka2 +"'+xnkn|5Q. (20)

If (4) is multiplied by %, we get the scaled value of X:

n
X-SQ X;
—=<=1|) sQ-=-|pP1,
P = |2 S0 P,
i=1 SQ

From the definition of k; (19) we can derive B; - SQ — k;p; = 1, where B; = |Pi‘1|pl., which is
equivalent to B; = [P, Thus, k; =“;—?- |Pi|pi—$, where i—Q |P7H,, = ki+$. Then

i

2D

substituting k; + 1% in (20) instead of k; we get the scaled value of D'(X). Thus, to obtain the value

of X, substitute the calculated values in (21) and multiply by %.

sQ | 1
2 [Safed)
pi

SQ

P |
i=1

_P D) +3Eixi Py

X 50

(22)

Consider this method with an example.

Example 5. Similarly, we are given RNS {2, 3, 5, 7, 11} and a number X = 1481 = (1,2,1,4, 7).
From the previous examples we know P = 2310, P, = 1155, P, =770, P; =462, P, =
330, P = 210. Then SQ =2927 and from (19) k, = 1463, k, = 1951, k; = 1756, k, =
418, ks = 266. Find the diagonal function

D(X) = |10655|2927 = 1874’,
From (22) find the required value:

_ 4334887

2927 1481.

4. The Akushsky Core Function Method Based on the Rank of Number
We present a fast technique for conversion numerical values from the RNS to positional notation.

This approach involves using the Akushsky Core Function to find the rank of a number. The
Akushsky Core Function [18] is defined by the following equation

cX) = iwi L,{J . 23)

where integers w; are constants determined by the choice of the interpolation point. The numbers w;
in equation (23) can be arbitrary in a certain sense. It is they that define each particular core function
and can vary depending on the problem to be solved. An algorithm for determining the optimal
weights for the Akushsky core function is presented in [19].

Core function range value is calculated as

n
i=1
We define the so-called orthogonal bases B; as
B, =P |Pi_1|pi1
We also define the coefficients c; as
Ci = C(Bl)r

Rewrite (23) as
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n

i=1

n
=D =00 Gy, (25)
Cp i=1
Then the rank of the Akushsky core function number can be defined as

F(X) = [L“C(: 'x"J.

There are three forms of representation of the CRT, each of them corresponds to a positional
characteristic of the number represented in RNS.

The first form was represented in (4), the rank of a number in this representation can be calculated

as follows
n
1 -1
E ;‘|Pi lp; - xi|- (27)
L

i=1

CX) =

(26)

r(X) =

Second form

ZP 1Py, ], =700 P, 28)

ZP 1Py, ],
p i=1

where 7#(X) is the normallsed rank of the number, which can be calculated as

n 1 9
Do el |, 29

i=1

7(X) =

The third form is proposed and its rank is represented respectively in (25) and (26).
Consider the following properties.
Theorem 1.

& (1P - xi]

AX) X +Z ) i
7 =—— _—
P pi

Proof:
According to the definition

PX) = Z

i=1

[P 1|,,L %l
leP;ll,,,xilm-Pi . (30)
=1

X |X|P

Since l J =-——- then

n 1 n
= EZlIPi_llm 'xilpi'Pi -3 Z“Pi_llpi 'xi|pi P
i i=1

According to the CRT, |Z L |IPT 1|pl xl|p -Pi| = X, consequently,
P

X
- F.Z“P"_l"’i i, P
i=

P

The theorem is proved.
Theorem 2.
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Proof:

. P,
It follows directly from Theorem 1 that #(1) = — % +>, o 2

The theorem is proved.
Let us examine the correlation between the ranks of positional characteristics.
Theorem 3.

RNS
Let p; < p, < -+ < py, the number X — (xq, x5, ..., x,,) and the weights of the Akushsky core
function wy, w,, ..., w,, satisfying the condition 0 < X < P, then

C(X)
X)) =rX) + (31
Proof:
Let us calculate c;, we get
n
P . P
c¢;=C(B) = Z w; l%j (32)
= P

Since Vi # j: |P*|,, - P, = 0mod p; and Vi: [P |, - P; = 1 mod p;, then for i # j: ||P7],, -
P, Pi

Pi/pi] = —"— and for i = j: [IP7Mlp, - Pi/pi] =

represented as follows

[P, Pi1 .
B , hence the coefficient ¢; can be

Clzlpi_llpi'Pi' T (33)

Given that Y7, % = %P, then (33) is transformed to the form
J

n

n
TG X 1 1 X w;
#X) = Xia G Xi| _ _.Z|pi—1|p.pi.xi__.z;_ (34)
P : Cp 4 p;
i=1 i=1
Substituting (34) into (28), we obtain
X 1 = Xi - Wi
FX) = r(X)+———-Z— . (35)
P G = bi

Considering that

iJCiz;iWi=z(X plp! J) =X iﬁ;_ilﬁ].wi=x.%—c(x) (36)

i=1 i=1 i=1 i=1

Substituting (36) into (35), we obtain

7(X) = [r(X) + 37)

Sinceasr(X) € Z,andVa € R,n € Z: |a + n] = |a] + n, then

TX)=r(X) + lC( )

Theorem 4. Let p; < p, < -+ < p,, anumber X € Zp and an Akushsky core function with with all
positive weights w; be given, then 7#(X) = r(X).
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Proof:

According to Theorem 3, #(X) = r(X) + lg] Given that the Akushsky core function contains no
)4

critical cores, VX € [0,P): 0 < C(X) < Cp. Hence l%:)
The theorem is proved.
Let us consider our proposed method with an example.
Example 6. Similarly, we are given RNS p, = 2,p, = 3,p3 = 5,p, = 7,ps = 11 and a number
X =1481=(1,2,14,7). P = 2310,P, = 1155,P, = 770, P; = 462,P, = 330, P; = 210. Let us
use a set of weights w; = 0,w, = 0,w3 = 0,w, = 0,wg = 1.
Let us calculate the values of B;:
B, =P, - |P;| = 1155,B, = P, - |P;!| = 1540,B; = P, - |P; 1| = 1386,
B, =P, - |P;'| = 330,Bs = Ps - |P5t| = 210.
Then we find the value of the core function range by (24)
C(P) = Cp = 210.

= 0, and hence #*(X) = r(X).

Find the value of coefficients c;:

¢; = 105,¢, = 140,¢c5 = 126,c4 = 30,¢5 = 19.
Then the rank of the number is
105-1+140-2+126-1+30-4+19-7J

210

FX) =

Thus,
X =1155-1+1540-2+1386-1+330-4+210-7 —3-2310 = 1481.

5. Performance Evaluation

The methodology expounded in Section 4 evinces an indisputable advantage over the approaches
outlined in Section 3.

To validate the properties of each approach, every algorithm was carefully implemented in Python,
and a comprehensive performance analysis was executed on a computer equipped with an Intel Core
i7-7700HQ processor running at 2.80 GHz, 8 GB DDR4 RAM at 1196 MHz, and a 512 GB SSD,
operating on Windows 10 Home Edition. The study involves two significant phases:

Stage A examines the performance of three moduli by processing data sets of 50000, 100000,
200000, 350000, and 500000 using each of the proposed methods.

In Stage B, we expanded our analysis to cover 19 sets, varying from 3 to 21 moduli, with each
modulo having an 8-bit dimensionality. We processed a data set of 1700000 numbers.

Throughout the two-stage simulation, we measured the time characteristics of each method with
attention to detail. To guarantee precision and dependability, we reiterated each measurement one
hundred times and recorded the average time for evaluation. The findings of these experiments are
presented concisely in Tables 2 and 3, with time values depicted in seconds.

Let us conduct a detailed examination of the ensuing tables, delving deeper into the tabulated data
with a scientific scrutiny. The provided information discusses two stages: Stage A and Stage B,
focusing on their time characteristics and importance. Stage A is crucial for tracking method
behavior with increasing data size. Analysis of the data shows a linear growth, which indicates the
stability of the obtained method using the core function. To enhance understanding, graphs will be
presented.

Table 2 provides insights into the time-related features observed during Stage B, underscoring the
significance of this phase akin to Stage A. In a practical system comprising the control system may
encompass various configurations, such as two, four, six, or more moduli. Consequently, exploring
the behavior of methods in relation to the number of moduli within the system becomes imperative.
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The acquired data not only facilitates an understanding of methodological performance but also
allows for inferences regarding the stability of the methods.

Table 2. The result of the study of stage A.

Amoun CRT Approximat MRC Interval DF E?)r;:
t Method e Method Method Method Method
Method

50000 0.17%38475 015310092 0.17127851 0.874%2892 0.28%31243 0.133;30851
100000 0.37;139160 0.33490013 1.61%5976 1.9496377 0.484{32178 0.29%7209
200000 0.70%8841 057174363 2.60%6207 3.31%7629 1.19%2631 0.45@2000
350000 1.1925852 1.14163585 4.49:;2913 5.656‘;3546 1.68&;0754 0.87994280
500000 1.688;4722 1.59833269 6.57%6256 8.143;8398 2.546;5111 1.25%4046

Table 3. The result of stage B study: dimension of modulo set p[n] where n represents modulo count in the
ensemble.

CRT Approximate MRC Interval DF Rank Core
pn] Method Method Method Method Method Method
3 0.04886961 | 0.04188609 | 0.16806006 | 0.19650173 | 0.07034159 | 0.0388873
4 0.04986429 | 0.04387736 | 0.21841407 | 0.25733018 | 0.08476949 | 0.03990845
5 0.05085826 | 0.04582379 | 0.34164977 | 0.30221629 | 0.09973574 | 0.04392817
6 0.06984472 | 0.07378912 | 0.34810019 | 0.33629251 | 0.10273242 | 0.0588873
7
8

0.07682538 | 0.08676386 | 0.41370296 | 0.39549708 | 0.11066651 | 0.06990845
0.07836747 | 0.09275365 | 0.51267076 | 0.43252301 | 0.12862134 | 0.07392817
9 0.08676624 | 0.09826112 | 0.59272242 | 0.45488119 | 0.13066811 | 0.09067698
10 0.09473872 | 0.10372066 | 0.62236333 | 0.53865314 | 0.13461476 | 0.09264201
11 0.11070347 | 0.11968732 | 0.72314477 | 0.55988812 | 0.15419126 | 0.09558553
12 0.11466908 | 0.12268424 | 0.77975607 | 0.6223812 | 0.17807412 | 0.11655969
13 0.12469697 | 0.12665558 | 0.88087988 | 0.63008047 | 0.19151998 | 0.12052173
14 0.13267827 | 0.12510133 | 1.01868820 | 0.66010213 | 0.19850206 | 0.12311763
15 0.13463926 | 0.12766194 | 1.04511428 | 0.75057304 | 0.20049644 | 0.12251919
16 0.16458368 | 0.12769699 | 1.15422750 | 0.81782241 | 0.20647359 | 0.11738696
17 0.16755462 | 0.13862944 | 1.29933691 | 0.86782241 | 0.23633909 | 0.12436595
18 0.16951680 | 0.14361358 | 1.35722113 | 0.87273455 | 0.24734974 | 0.13237681
19 0.17810869 | 0.15760803 | 1.40875983 | 0.93827939 | 0.26701593 | 0.13935819
20 0.18051696 | 0.15960505 | 1.51713409 | 0.98166609 | 0.26928353 | 0.15541186
21 0.18350887 | 0.16758013 | 1.63444066 | 1.02923965 | 0.27526116 | 0.16631331

The data from the given table were utilized to create visual representations in the form of figures. In
addition, a more comprehensive analysis was enabled by extrapolating the acquired values through
polynomial methods, extending the perspective on the outcomes.

Upon scrutinizing the acquired outcomes, we can extrapolate the following deductions. Examining
the graphical representation in Fig. 1, it becomes apparent that conventional methodologies
demonstrate efficacy particularly when handling a limited quantity of numerical inputs. However,
starting from the processing of two hundred thousand numbers, MRC method and interval method
begin to lose.
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A similar situation is apparent in the graph presented in Fig. 2. On average, our approach displays a
time efficiency that is roughly 8 % superior to that of the Approximate Method.

The comparative analysis conducted on methods for translating numbers from RNS to positional
notation revealed that the method utilizing Akushsky core function and number rank offers certain
advantages. This is due to the performance of addition and multiplication operations in positional
notation within the mentioned approach. When performing calculations using MRC, each RNS
modulo corresponds to a separate channel in which calculations are completed using modular
arithmetic. However, these calculations are not performed in parallel. When using the interval
method, it is necessary to complete operations such as addition, multiplication, and degree expansion
in the positional system. Degree expansion can result in rather large values. One positive aspect of
the interval method is the ability to process data in a conveyor-like manner.

6. Conclusion

In this paper, we have presented a high speed method for converting numbers from RNS to positional
notation. The proposed method offers a novel approach to achieve rapid and accurate conversions.
By leveraging the inherent properties of the RNS and optimizing algorithms, our method streamlines
the conversion process, minimizing computational complexities, and significantly reducing
conversion times. Experiments demonstrate its superiority over conventional methods, showcasing
notable improvements in speed.

While our proposed method represents a significant advancement, there is still room for further
exploration and optimization. Future studies may investigate hybrid conversion techniques that
combine the strengths of different algorithms, aiming to achieve even greater efficiency.
Additionally, evaluating the proposed method's performance in large-scale systems and exploring
its potential application in emerging technologies will be exciting avenues for future research.

12
—— CRT Method
10
—#— Approximate Method
8
(=]
a MRC Method
o 6
£
- 4 Interval Method
2 e . —+— DF Method
0 | . , . , . , . #— Rank Core Method
0 100000 200000 300000 400000 500000 600000 700000
Amount of numbers

Fig. 1. Findings from stage A analysis.
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Fig. 2. Findings from stage B analysis.
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