

Н. Гусейин, А. Гусейин, Х. Г. Гусейнов, Аппроксимация множества траекторий управляемой системы, описываемой интегральным уравнением Урысона, Tp. ИММ УрО РАН, 2015, том 21, номер 2, 59–72

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 3.144.104.118

8 января 2025 г., 08:35:34

Tom 21 № 2 2015

УДК 517.977

АППРОКСИМАЦИЯ МНОЖЕСТВА ТРАЕКТОРИЙ УПРАВЛЯЕМОЙ СИСТЕМЫ, ОПИСЫВАЕМОЙ ИНТЕГРАЛЬНЫМ УРАВНЕНИЕМ УРЫСОНА

Н. Гусейин, А. Гусейин, Х. Г. Гусейнов

Рассматривается аппроксимация множества траекторий управляемой системы, описываемой интегральным уравнением Урысона. Замкнутый шар пространства $L_p([a,b];\mathbb{R}^m)$ (p>1) с радиусом r и центром в начале координат выбирается в качестве множества допустимых управлений. Множество допустимых управлений заменяется множеством управляющих функций, которое состоит из конечного числа управлений и порождает конечное число траекторий. Получена оценка точности для хаусдорфова расстояния между множеством траекторий и множеством, состоящим из конечного числа траекторий.

Ключевые слова: интегральное уравнение Урысона, управляемая система, интегральное ограничение, множество траекторий, аппроксимация.

N. Huseyin, A. Huseyin, Kh. G. Guseinov. Approximation of the set of trajectories of a control system described by the Urysohn integral equation.

The approximation of the set of trajectories of a control system described by the Urysohn integral equation is considered. The closed ball of the space $L_p([a,b];\mathbb{R}^m)$ (p>1) of radius r centered at the origin is chosen as the set of admissible controls. This set is replaced by a set of control functions, which consists of a finite number of controls and generates a finite number of trajectories. An accuracy estimate is obtained for the Hausdorff distance between the set of trajectories and the set consisting of a finite number of trajectories.

Keywords: Urysohn integral equation, control system, integral constraint, set of trajectories, approximation.

Введение

Интегральные уравнения возникают в разных задачах современной физики, механики, экономики, биологии и медицины (см., например, [1–12] и ссылки в них). Некоторые процессы, описываемые интегральными уравнениями, имеют внешние воздействия, которые характеризуются как управляющие воздействия. Многие управляющие воздействия имеют ограниченные запасы, и они, как правило, заканчиваются при потреблении. К таким управляющим воздействиям можно отнести управления, которые базируются на некоторых запасах энергии, топлива, капитала или же продуктов питания. Эти управляющие функции обычно характеризуются интегральными ограничениями на управляющие функции (см., например, [13–23]).

Управляемые системы, описываемые интегральными уравнениями, изучаются в работах [1;3;4;7;8]. В статьях [7;15;16] рассматривается аппроксимация множества траекторий управляемой системы, описываемой обыкновенным дифференциальным уравнением и интегральным уравнением типа Вольтерра, где функции управления имеют интегральное ограничение.

В данной работе изучается множество траекторий управляемой системы, описываемой интегральным уравнением типа Урысона с интегральным ограничением на функции управления. Предполагается, что уравнение является нелинейным по вектору состояния, аффинным по вектору управления. Замкнутый шар пространства $L_p([a,b];\mathbb{R}^m)$ (p>1) с радиусом r и центром в начале координат выбирается в качестве множества допустимых управлений.

Шаг за шагом множество допустимых управлений упрощается, и в конце оно заменяется множеством, которое содержит конечное число управляющих функций и порождает конечное число траекторий. Получена оценка точности для хаусдорфова расстояния между множеством траекторий системы и множеством, состоящим из конечного числа траекторий.

1. Уравнение системы и основные условия

Рассмотрим управляемую систему, которая описывается интегральным уравнением Урысона

$$x(\xi) = f(\xi, x(\xi)) + \lambda \int_{a}^{b} \left[K_1(\xi, s, x(s)) + K_2(\xi, s, x(s)) u(s) \right] ds, \tag{1.1}$$

где $x \in \mathbb{R}^n$ — вектор состояния, $u \in \mathbb{R}^m$ — вектор управления, $\xi \in [a,b], \ \lambda \in \mathbb{R}^1$. Пусть p > 1 и r > 0 — заданные числа,

$$U_{p,r} = \{u(\cdot) \in L_p([a,b]; \mathbb{R}^m) : \|u(\cdot)\|_p \le r\},\$$

где $L_p\big([a,b];\mathbb{R}^m\big)$ является пространством измеримых по Лебегу функций $u(\cdot)\colon [a,b]\to\mathbb{R}^m$ таких, что $\|u(\cdot)\|_p<+\infty,\ \|u(\cdot)\|_p=\Big(\int_a^b\|u(s)\|^p\,ds\Big)^{\frac{1}{p}},\ \|\cdot\|$ означает евклидову норму.

 $U_{p,r}$ называется множеством допустимых управлений, а каждая функция $u(\cdot) \in U_{p,r}$ – допустимым управлением. В силу неравенства Гельдера для любой $u(\cdot) \in U_{p,r}$ выполняется неравенство

$$\int_{a}^{b} \|u(s)\| \, ds \le (b-a)^{\frac{p-1}{p}} \, r. \tag{1.2}$$

Предполагается, что функции $f(\cdot)$, $K_1(\cdot)$, $K_2(\cdot)$ и число $\lambda \in \mathbb{R}^1$, заданные в уравнении (1.1), удовлетворяют следующим условиям:

- **А.** Функции $f(\cdot)\colon [a,b]\times\mathbb{R}^n\to\mathbb{R}^n,\, K_1(\cdot)\colon [a,b]\times[a,b]\times\mathbb{R}^n\to\mathbb{R}^n$ и $K_2(\cdot)\colon [a,b]\times[a,b]\times\mathbb{R}^n\to\mathbb{R}^n$ непрерывны по совокупности аргументов.
 - **В.** Существуют постоянные Липшица $l_0 \in [0,1), l_1 \geq 0$ и $l_2 \geq 0$ такие, что

$$||f(\xi, x_1) - f(\xi, x_2)|| \le l_0 ||x_1 - x_2||$$

при всех $(\xi, x_1) \in [a, b] \times \mathbb{R}^n$, $(\xi, x_2) \in [a, b] \times \mathbb{R}^n$ и

$$||K_1(\xi, s, x_1) - K_1(\xi, s, x_2)|| \le l_1 ||x_1 - x_2||, \quad ||K_2(\xi, s, x_1) - K_2(\xi, s, x_2)|| \le l_2 ||x_1 - x_2||,$$

при любых $(\xi, s, x_1) \in [a, b] \times [a, b] \times \mathbb{R}^n$, $(\xi, s, x_2) \in [a, b] \times [a, b] \times \mathbb{R}^n$.

C. Выполняется неравенство $0 \le \lambda \left[l_1\left(b-a\right) + l_2\left(b-a\right)^{\frac{p-1}{p}}r\right] < 1 - l_0$.

Обозначим

$$l(\lambda) = l_0 + \lambda \left[l_1 (b - a) + l_2 (b - a)^{\frac{p-1}{p}} r \right]. \tag{1.3}$$

Из условия C и неравенства (1.2) следует, что для любой $u(\cdot) \in U_{p,r}$ выполняется следующее уравнение:

$$\frac{\lambda}{1 - l_0} \int_{a}^{b} (l_1 + l_2 \| u(s) \|) ds \le \frac{\lambda}{1 - l_0} \left[l_1(b - a) + l_2 (b - a)^{\frac{p-1}{p}} r \right] = \frac{l(\lambda) - l_0}{1 - l_0} < 1. \tag{1.4}$$

Приведем определение траекторий системы (1.1), порожденных допустимым управлением $u(\cdot) \in U_{p,r}$. Непрерывная функция $x(\cdot) : [a,b] \to \mathbb{R}^n$, удовлетворяющая уравнению (1.1) при

всех $\xi \in [a,b]$, называется траекторией системы (1.1), порожденной допустимым управлением $u(\cdot) \in U_{p,r}$. Совокупность траекторий (1.1), порожденных всеми допустимыми управлениями $u(\cdot) \in U_{p,r}$, обозначим символом $\mathbf{X}_{p,r}$.

Отметим, что условия A-C гарантируют, что каждое допустимое управление $u(\cdot) \in U_{p,r}$ порождает единственную траекторию $x(\cdot) \colon [a,b] \to \mathbb{R}^n$ системы (1.1). Теперь сформулируем некоторые вспомогательные утверждения, которые будут использоваться в дальнейших исследованиях.

Утверждение 1. Пусть $v(\cdot):[a,b]\to\mathbb{R}$ u $r(\cdot):[a,b]\to\mathbb{R}$ — непрерывные функции, $\psi(\cdot):[a,b]\to[0,+\infty)$ — интегрируемая по Лебегу функция, $\int_a^b\psi(s)ds<1$ u

$$v(\xi) \le r(\xi) + \int_{a}^{b} \psi(s)v(s)ds \tag{1.5}$$

для всех $\xi \in [a,b]$. Тогда

$$v(\xi) \le r(\xi) + \frac{\int_{a}^{b} r(s)\psi(s)ds}{1 - \int_{a}^{b} \psi(s)ds}$$

$$(1.6)$$

 $npu\ ecex\ \xi\in[a,b].$

Более того, если $r(\xi) = r_0$ для всех $\xi \in [a,b]$ и $\int_a^b \psi(s) ds \le a_0 < 1$, то из (1.5) следует, что

$$v(\xi) \le \frac{r_0}{1 - a_0} \tag{1.7}$$

npu любых $\xi \in [a,b]$.

Доказательство. Так как $\psi(\xi) \ge 0$ для всех $\xi \in [a,b]$, то из (1.5) имеем, что

$$\psi(\xi)v(\xi) \le r(\xi)\psi(\xi) + \psi(\xi) \int_{a}^{b} \psi(s)v(s)ds \tag{1.8}$$

при всех $\xi \in [a, b]$. Проинтегрировав неравенство (1.8) на отрезке [a, b], получаем, что

$$\int_{a}^{b} \psi(s)v(s)ds \le \int_{a}^{b} r(s)\psi(s)ds + \int_{a}^{b} \psi(s)ds \int_{a}^{b} \psi(s)v(s)ds. \tag{1.9}$$

Поскольку $\int_a^b \psi(s)ds < 1$, то из (1.9) вытекает справедливость неравенства (1.6). Наконец, справедливость неравенства (1.7) сразу следует из (1.6).

Утверждение 2. Множество траекторий $\mathbf{X}_{p,r}$ является ограниченным подмножеством пространства $C\left([a,b];\mathbb{R}^n\right)$, т. е. существует $r_*>0$ такое, что $\|x(\cdot)\|_C\leq r_*$ для всех $x(\cdot)\in\mathbf{X}_{p,r}$.

 $3 decb \ C \ ([a,b];\mathbb{R}^n)$ является пространством непрерывных функций $x(\cdot)\colon [a,b] \to \mathbb{R}^n$ с нормой $\|x(\cdot)\|_C = \max\big\{\|x(\xi)\|: \xi \in [a,b]\big\}.$

Доказательство. Из условия B следует, что

$$||f(\xi,x)|| \le c_0 + l_0 ||x||, \quad ||K_1(\xi,s,x)|| \le c_1 + l_1 ||x||, \quad ||K_2(\xi,s,x)|| \le c_2 + l_2 ||x||$$
 (1.10)

при всех $(\xi, x) \in [a, b] \times \mathbb{R}^n$ и $(\xi, s, x) \in [a, b] \times [a, b] \times \mathbb{R}^n$, где

$$c_0 = \max \{ \| f(\xi, 0) \| : \xi \in [a, b] \}, \quad c_1 = \max \{ \| K_1(\xi, s, 0) \| : (\xi, s) \in [a, b] \times [a, b] \},$$
$$c_2 = \max \{ \| K_2(\xi, s, 0) \| : (\xi, s) \in [a, b] \times [a, b] \},$$

а постоянные l_0 , l_1 и l_2 определены в условии B.

Пусть $x(\cdot) \in \mathbf{X}_{p,r}$ — произвольная траектория системы (1.1), порожденная функцией управления $u(\cdot) \in U_{p,r}$. Тогда из (1.2) и (1.10) получаем, что

$$||x(\xi)|| \le c_0 + l_0 ||x(\xi)|| + \lambda \int_a^b [c_1 + l_1 ||x(s)||] ds + \lambda \int_a^b [c_2 + l_2 ||x(s)||] ||u(s)|| ds$$

$$\le c_0 + l_0 ||x(\xi)|| + \lambda c_1 (b - a) + \lambda c_2 (b - a)^{\frac{p-1}{p}} r + \lambda \int_a^b [l_1 + l_2 ||u(s)||] ||x(s)|| ds.$$

Так как $l_0 \in [0,1)$, то из последнего неравенста вытекает, что

$$||x(\xi)|| \le \frac{c_0 + \lambda c_1(b-a) + \lambda c_2(b-a)^{\frac{p-1}{p}}r}{1 - l_0} + \frac{\lambda}{1 - l_0} \int_a^b [l_1 + l_2 ||u(s)||] ||x(s)|| ds.$$
 (1.11)

Из (1.3), (1.4), (1.11) и утверждения 1 следует, что

$$||x(\xi)|| \le \frac{c_0 + \lambda c_1(b-a) + \lambda c_2(b-a)^{\frac{p-1}{p}}r}{1 - l_0} \frac{1}{1 - \frac{\lambda \left[l_1(b-a) + l_2(b-a)^{\frac{p-1}{p}}r\right]}{1 - l_0}}$$

$$= \frac{c_0 + \lambda c_1(b-a) + \lambda c_2(b-a)^{\frac{p-1}{p}}r}{1 - l_0} \frac{1}{1 - \frac{l(\lambda) - l_0}{1 - l_0}}$$

$$= \frac{c_0 + \lambda c_1(b-a) + \lambda c_2(b-a)^{\frac{p-1}{p}}r}{1 - l(\lambda)}.$$
(1.12)

Поскольку $\xi \in [a,b]$ является произвольно выбранной, то, обозначив

$$r_* = \frac{c_0 + \lambda c_1(b-a) + \lambda c_2(b-a)^{\frac{p-1}{p}} r}{1 - l(\lambda)}$$
,

из неравенства (1.12) получим доказательство утверждения.

Введем обозначения

$$B_n(r_*) = \{x \in \mathbb{R}^n : ||x|| \le r_*\},$$

$$B_C = \{x(\cdot) \in C([a, b]; \mathbb{R}^n) : ||x(\cdot)||_C \le 1\},$$
(1.13)

$$D_1 = [a, b] \times B_n(r_*), \quad D_2 = [a, b] \times [a, b] \times B_n(r_*),$$

$$M_2 = \max\{ \|K_2(\xi, s, x)\| : (\xi, s, x) \in D_2 \},$$
(1.14)

$$\omega_0(\Delta) = \max \big\{ \|f(\xi_2, x) - f(\xi_1, x)\| : |\xi_2 - \xi_1| \le \Delta, \ (\xi_1, x) \in D_1, \ (\xi_2, x) \in D_1 \big\},\$$

$$\omega_1(\Delta) = \max \left\{ \|K_1(\xi_2, s_2, x_2) - K_1(\xi_1, s_1, x_1)\| \colon |\xi_2 - \xi_1| \le \Delta, |s_2 - s_1| \le \Delta, \right.$$
$$\|x_2 - x_1\| \le \Delta, \ (\xi_1, s_1, x_1) \in D_2, \ (\xi_2, s_2, x_2) \in D_2 \right\},$$

$$\omega_2(\Delta) = \max \left\{ \|K_2(\xi_2, s_2, x_2) - K_2(\xi_1, s_1, x_1)\| : |\xi_2 - \xi_1| \le \Delta, |s_2 - s_1| \le \Delta, \right.$$
$$\|x_2 - x_1\| \le \Delta, (\xi_1, s_1, x_1) \in D_2, (\xi_2, s_2, x_2) \in D_2 \right\}, \tag{1.15}$$

$$\varphi(\Delta) = \frac{1}{1 - l_0} \left\{ \omega_0(\Delta) + \lambda(b - a)\omega_1(\Delta) + \lambda\omega_2(\Delta) \left(b - a\right)^{\frac{p - 1}{p}} r \right\},\tag{1.16}$$

где r_* определена в утверждении 2. Очевидно, что функция $\varphi(\cdot): (0, +\infty) \to (0, +\infty)$ является неубывающей и $\varphi(\Delta) \to 0^+$ при $\Delta \to 0^+$. Не нарушая общности, будем полагать, что

$$\varphi(\Delta) \ge \Delta \tag{1.17}$$

при всех $\Delta > 0$.

Утверждение 3. Для любых $x(\cdot) \in \mathbf{X}_{p,r}, \, \xi_1 \in [a,b], \, \xi_2 \in [a,b]$ справедливо неравенство

$$||x(\xi_2) - x(\xi_1)|| \le \varphi(|\xi_2 - \xi_1|),$$

 $rde \varphi(\cdot)$ определена равенством (1.16).

Доказательство утверждения 3 следует из условий $\mathbf{A} - \mathbf{C}$.

Так как $\varphi(\Delta) \to 0^+$ при $\Delta \to 0^+$, то из утверждения 3 получаем, что множество траекторий $\mathbf{X}_{p,r}$ является семейством равностепенно непрерывных функций. Тогда в силу утверждения 2 и теоремы Арцела — Асколи имеем, что множество траекторий $\mathbf{X}_{p,r}$ является предкомпактным подмножеством пространства $C([a,b];\mathbb{R}^n)$. Далее, используя слабую компактность множества допустимых управлений $U_{p,r}$ в пространстве $L_p([a,b];\mathbb{R}^m)$ и аффинность правой части уравнения (1.1) относительно u, можно доказать, что множество траекторий $\mathbf{X}_{p,r}$ является замкнутым в пространстве $C([a,b];\mathbb{R}^n)$. Наконец, из предкомпактности и замкнутости следует компактность множества траекторий $\mathbf{X}_{p,r}$ в пространстве $C([a,b];\mathbb{R}^n)$. Итак, справедливо следующее утверждение.

Утверждение 4. Множество траекторий $\mathbf{X}_{p,r}$ является компактным подмножеством пространства $C([a,b];\mathbb{R}^n)$.

Положим

$$L_* = \frac{\lambda M_2}{1 - l(\lambda)} \,, \tag{1.18}$$

где $l(\lambda)$ определена соотношением (1.3), а M_2 — соотношением (1.14).

Утверждение 5. Пусть $x_1(\cdot) \in \mathbf{X}_{p,r}$ и $x_2(\cdot) \in \mathbf{X}_{p,r}$ являются траекториями системы (1.1), порожденными соответственно допустимыми управлениями $u_1(\cdot) \in U_{p,r}$ и $u_2(\cdot) \in U_{p,r}$. Тогда

$$||x_1(\xi) - x_2(\xi)|| \le L_* \int_a^b ||u_1(s) - u_2(s)|| ds$$

для всех $\xi \in [a,b]$.

Доказательство. Так как $x_1(\cdot)$ и $x_2(\cdot)$ являются траекториями системы (1.1), порожденными соответственно допустимыми управлениями $u_1(\cdot) \in U_{p,r}$ и $u_2(\cdot) \in U_{p,r}$, то из условия B вытекает, что

$$||x_{1}(\xi) - x_{2}(\xi)|| \leq ||f(\xi, x_{1}(\xi)) - f(\xi, x_{2}(\xi))|| + \lambda \int_{a}^{b} ||K_{1}(\xi, s, x_{1}(s)) - K_{1}(\xi, s, x_{2}(s))|| ds$$

$$+ \lambda \int_{a}^{b} ||K_{2}(\xi, s, x_{1}(s))|| ||u_{1}(s) - u_{2}(s)|| ds + \lambda \int_{a}^{b} ||K_{2}(\xi, s, x_{1}(s)) - K_{2}(\xi, s, x_{2}(s))|| ||u_{2}(s)|| ds$$

$$\leq l_{0} ||x_{1}(\xi) - x_{2}(\xi)|| + \lambda \int_{a}^{b} (l_{1} + l_{2} ||u_{2}(s)||) ||x_{1}(s) - x_{2}(s)|| ds$$

$$+ \lambda \int_{a}^{b} ||K_{2}(\xi, s, x_{1}(s))|| ||u_{1}(s) - u_{2}(s)|| ds$$

$$(1.19)$$

при всех $\xi \in [a, b]$.

Поскольку $x_1(\cdot) \in \mathbf{X}_{p,r}$, то согласно утверждению 2 справедливо $\|x_1(\cdot)\|_C \leq r_*$. Тогда из (1.14) получаем, что

$$||K_2(\xi, s, x_1(s))|| \le M_2 \tag{1.20}$$

для всех $\xi \in [a,b]$ и $s \in [a,b]$. Так как $l_0 \in [0,1)$, то из неравенств (1.19) и (1.20) имеем, что

$$||x_1(\xi) - x_2(\xi)|| \le \frac{\lambda M_2}{1 - l_0} \int_a^b ||u_1(s) - u_2(s)|| \, ds$$

$$+ \frac{\lambda}{1 - l_0} \int_a^b [l_1 + l_2 ||u_2(s)||] ||x_1(s) - x_2(s)|| \, ds$$
(1.21)

при любых $\xi \in [a, b]$. Поскольку $u_2(\cdot) \in U_{p,r}$, то из (1.4), (1.18), (1.21) и утверждения 1 вытекает, что

$$||x_1(\xi) - x_2(\xi)|| \le \frac{\frac{\lambda M_2}{1 - l_0}}{1 - \frac{l(\lambda) - l_0}{1 - l_0}} \int_a^b ||u_1(s) - u_2(s)|| \, ds$$
$$= \frac{\lambda M_2}{1 - l(\lambda)} \int_a^b ||u_1(s) - u_2(s)|| \, ds = L_* \int_a^b ||u_1(s) - u_2(s)|| \, ds$$

для всех $\xi \in [a, b]$.

2. Геометрическое ограничение

Пусть $\beta > 0$ — заданное число. Положим

$$U_{p,r}^{\beta} = \{u(\cdot) \in U_{p,r} : ||u(\xi)|| \le \beta$$
 для всех $\xi \in [a,b]\}.$

Множество траекторий системы (1.1), порожденных функциями управления $u(\cdot) \in U_{p,r}^{\beta}$, обозначим символом $\mathbf{X}_{p,r}^{\beta}$ и положим

$$c_* = 2L_* r^p, \tag{2.1}$$

где L_* определено соотношением (1.18).

Хаусдорфово расстояние между множествами $G \subset C([a,b];\mathbb{R}^n)$ и $W \subset C([a,b];\mathbb{R}^n)$ обозначим символом $h_C(G,W)$. Следующее утверждение характеризует хаусдорфово расстояние между множествами $\mathbf{X}_{p,r}$ и $\mathbf{X}_{p,r}^{\beta}$.

Утверждение 6. Для любого $\beta > 0$ выполняется неравенство

$$h_C\left(\mathbf{X}_{p,r}, \mathbf{X}_{p,r}^{\beta}\right) \le \frac{c_*}{\beta^{p-1}}.$$

Д о к а з а т е л ь с т в о. Выберем произвольную траекторию $x(\cdot) \in \mathbf{X}_{p,r}$, порожденную функцией управления $u(\cdot) \in U_{p,r}$. Определим новую функцию управления $u_*(\cdot) : [a,b] \to \mathbb{R}^m$, полагая

$$u_*(\xi) = \begin{cases} u(\xi) , & \text{если } ||u(\xi)|| \le \beta, \\ \beta \frac{u(\xi)}{||u(\xi)||} , & \text{если } ||u(\xi)|| > \beta, \end{cases}$$
 (2.2)

где $\xi \in [a, b]$.

Нетрудно установить, что $u_*(\cdot) \in U_{p,r}^{\beta}$. Пусть $x_*(\cdot)$ — траектория системы (1.1), порожденная функцией управления $u_*(\cdot) \in U_{p,r}^{\beta}$. Тогда $x_*(\cdot) \in \mathbf{X}_{p,r}^{\beta}$ и согласно утверждению 5 имеем, что

$$||x(\xi) - x_*(\xi)|| \le L_* \int_a^b ||u(s) - u_*(s)|| ds$$
 (2.3)

при любых $\xi \in [a,b]$. Полагая $\Omega = \{s \in [a,b]\colon \|u(s)\| > \beta\}$, из (2.2) и (2.3) получаем, что выполняется неравенство

$$||x(\xi) - x_*(\xi)|| \le L_* \int_{\Omega} ||u(s) - u_*(s)|| ds$$
(2.4)

при всех $\xi \in [a, b]$.

Из определения множества Ω и включения $u(\cdot) \in U_{p,r}$ вытекает, что

$$r^p \ge \int_a^b \|u(s)\|^p ds \ge \int_\Omega \|u(s)\|^p ds \ge \int_\Omega \beta^p ds \ge \beta^p \mu(\Omega)$$
,

где $\mu(\Omega)$ означает меру Лебега множества Ω , и, следовательно,

$$\mu(\Omega) \le \frac{r^p}{\beta^p} \,. \tag{2.5}$$

Из включений $u(\cdot) \in U_{p,r}, u_*(\cdot) \in U_{p,r}$, неравенства Гельдера и (2.5) следует, что

$$\int_{\Omega} \|u(s) - u_*(s)\| \, ds \le \int_{\Omega} \|u(s)\| \, ds + \int_{\Omega} \|u_*(s)\| \, ds \le 2\mu(\Omega)^{\frac{p-1}{p}} r \le 2 \frac{r^p}{\beta^{p-1}}. \tag{2.6}$$

Из соотношений (2.1), (2.4) и (2.6) получаем, что

$$||x(\xi) - x_*(\xi)|| \le 2L_* \frac{r^p}{\beta^{p-1}} = \frac{c_*}{\beta^{p-1}}$$

при всех $\xi \in [a, b]$, и поэтому

$$||x(\cdot) - x_*(\cdot)||_C \le \frac{c_*}{\beta^{p-1}}.$$
 (2.7)

Таким образом, для произвольно выбранной $x(\cdot) \in \mathbf{X}_{p,r}$ существует $x_*(\cdot) \in \mathbf{X}_{p,r}^{\beta}$ такая, что выполняется неравенство (2.7). Это означает, что

$$\mathbf{X}_{p,r} \subset \mathbf{X}_{p,r}^{\beta} + \frac{c_*}{\beta^{p-1}} B_C, \tag{2.8}$$

где B_C определено равенством (1.13).

Поскольку $\mathbf{X}_{p,r}^{\beta} \subset \mathbf{X}_{p,r}$, то включение (2.8) завершает доказательство.

3. Кусочно-постоянные функции управления

Пусть $\Gamma=\{a=\xi_0,\xi_1,\dots,\xi_N=b\}$ является равномерным разбиением замкнутого интервала $[a,b],\,\xi_{i+1}-\xi_i=\frac{b-a}{N}=\Delta,\,i=0,1,\dots,N-1.$ Полагая

$$U_{p,r}^{\beta,\Gamma} = \{u(\cdot) \in U_{p,r}^{\beta} \colon u(\xi) = u_i \text{ для всех } \xi \in [\xi_i, \xi_{i+1}), \ i = 0, 1, \dots, N-1\},$$

определим новое множество управляющих функций.

Множество траекторий системы (1.1), порожденных функциями управления $u(\cdot) \in U_{p,r}^{\beta,\Gamma}$, обозначим символом $\mathbf{X}_{p,r}^{\beta,\Gamma}$. Далее, положим

$$\chi(\Delta) = \frac{2\lambda(b-a)^{\frac{p-1}{p}}r}{1-l(\lambda)}\omega_2(\varphi(\Delta)),\tag{3.1}$$

где $\omega_2(\cdot)$ и $\varphi(\cdot)$ определены соответственно соотношениями (1.15) и (1.16).

Утверждение 7. Для любых $\beta > 0$ и равномерного разбиения Γ отрезка [a,b] выполняется неравенство

$$h_C\left(\mathbf{X}_{p,r}^{\beta}, \mathbf{X}_{p,r}^{\beta,\Gamma}\right) \le \chi(\Delta),$$

где Δ является диаметром разбиения Γ .

Доказательство. Выберем произвольную траекторию $x_*(\cdot) \in \mathbf{X}_{p,r}^{\beta}$, порожденную функцией управления $u_*(\cdot) \in U_{p,r}^{\beta}$. Теперь определим новую функцию управления $u^*(\cdot)$: $[a,b] \to \mathbb{R}^m$, полагая

$$u^*(\xi) = \frac{1}{\Delta} \int_{\xi_i}^{\xi_{i+1}} u_*(s)ds, \quad \xi \in [\xi_i, \xi_{i+1}), \quad i = 0, 1, \dots, N - 1.$$
 (3.2)

Можно показать, что $u^*(\cdot) \in U_{p,r}^{\beta,\Gamma}$. Пусть $x^*(\cdot)$ является траекторией системы (1.1), порожденной функцией управления $u^*(\cdot)$. Тогда $x^*(\cdot) \in \mathbf{X}_{p,r}^{\beta,\Gamma}$, и в силу условия B имеем, что

$$||x_{*}(\xi) - x^{*}(\xi)|| \leq \frac{\lambda}{1 - l_{0}} \int_{a}^{b} [l_{1} + l_{2} ||u_{*}(s)||] ||x_{*}(s) - x^{*}(s)|| ds$$

$$+ \frac{\lambda}{1 - l_{0}} \sum_{i=0}^{N-1} \left\| \int_{\xi_{i}}^{\xi_{i+1}} K_{2}(\xi, s, x^{*}(s)) [u_{*}(s) - u^{*}(s)] ds \right\|$$
(3.3)

при любых $\xi \in [a,b]$.

Имея в виду соотношения (3.2), получаем справедливость равенства

$$\int_{\xi_i}^{\xi_{i+1}} u^*(s)ds = \int_{\xi_i}^{\xi_{i+1}} u_*(s)ds,$$

и, следовательно,

$$\int_{\xi_{i}}^{\xi_{i+1}} K_{2}(\xi, s, x^{*}(s)) \left[u_{*}(s) - u^{*}(s) \right] ds$$

$$= \int_{\xi_{i}}^{\xi_{i+1}} \left[K_{2}(\xi, s, x^{*}(s)) - K_{2}(\xi, \xi_{i}, x^{*}(\xi_{i})) \right] \left[u_{*}(s) - u^{*}(s) \right] ds \tag{3.4}$$

при всех $i = 0, 1, \dots, N - 1$.

Согласно (1.17) и утверждению 3 имеем, что для всех $s \in [\xi_i, \xi_{i+1}]$ выполняется неравенство

$$|s - \xi_i| \le \varphi(\Delta), \quad ||x^*(s) - x^*(\xi_i)|| \le \varphi(\Delta).$$

Тогда из (1.15) вытекает, что

$$||K_2(\xi, s, x^*(s)) - K_2(\xi, \xi_i, x^*(\xi_i))|| \le \omega_2(\varphi(\Delta))$$
(3.5)

при любых $s \in [\xi_i, \xi_{i+1}]$ и $i = 0, 1, \dots, N-1$.

Из соотношений (3.4) и (3.5) следует, что

$$\left\| \int_{\xi_{i}}^{\xi_{i+1}} K_{2}(\xi, s, x^{*}(s)) \left[u_{*}(s) - u^{*}(s) \right] ds \right\| \leq \omega_{2}(\varphi(\Delta)) \int_{\xi_{i}}^{\xi_{i+1}} \left\| u_{*}(s) - u^{*}(s) \right\| ds \tag{3.6}$$

при всех $i=0,1,\dots,N-1$. Так как $u^*(\cdot)\in U_{p,r}^\beta$ и $u^*(\cdot)\in U_{p,r}^{\beta,\Gamma}$, то из (1.2), (3.3) и (3.6) получаем, что

$$||x_{*}(\xi) - x^{*}(\xi)|| \leq \frac{\lambda}{1 - l_{0}} \int_{a}^{b} [l_{1} + l_{2} ||u_{*}(s)||] ||x_{*}(s) - x^{*}(s)|| ds$$

$$+ \frac{\lambda}{1 - l_{0}} \omega_{2}(\varphi(\Delta)) \int_{a}^{b} ||u_{*}(s) - u^{*}(s)|| ds$$

$$\leq \frac{\lambda}{1 - l_{0}} \int_{a}^{b} [l_{1} + l_{2} ||u_{*}(s)||] ||x_{*}(s) - x^{*}(s)|| ds + \frac{2\lambda}{1 - l_{0}} \omega_{2}(\varphi(\Delta))(b - a)^{\frac{p-1}{p}} r$$

$$(3.7)$$

для всех $\xi \in [a, b]$.

Далее, из (1.4), (3.1), (3.7) и утверждения 1 заключаем, что

$$||x_*(\xi) - x^*(\xi)|| \le \frac{\frac{2\lambda\omega_2(\varphi(\Delta))(b-a)^{\frac{p-1}{p}}r}{1 - \frac{l(\lambda) - l_0}{1 - l_0}} = \frac{2\lambda\omega_2(\varphi(\Delta))(b-a)^{\frac{p-1}{p}}r}{1 - l(\lambda)} = \chi(\Delta)$$

при любых $\xi \in [a, b]$ и, следовательно,

$$||x_*(\cdot) - x^*(\cdot)||_C \le \chi(\Delta). \tag{3.8}$$

Итак, для произвольно выбранной траектории $x_*(\cdot) \in \mathbf{X}_{p,r}^{\beta}$ существует $x^*(\cdot) \in \mathbf{X}_{p,r}^{\beta,\Gamma}$ такая, что выполняется неравенство (3.8). Это означает, что

$$\mathbf{X}_{p,r}^{\beta} \subset \mathbf{X}_{p,r}^{\beta,\Gamma} + \chi(\Delta)B_C. \tag{3.9}$$

Поскольку $\mathbf{X}_{p,r}^{\beta,\Gamma} \subset \mathbf{X}_{p,r}^{\beta}$, то из включения (3.9) получаем доказательство утверждения.

4. Функции управления с нормами в равномерном разбиении

Пусть $\Gamma_* = \{0 = \alpha_0, \alpha_1, \dots, \alpha_q = \beta\}$ является равномерным разбиением отрезка $[0, \beta],$ $\alpha_{j+1} - \alpha_j = \frac{\beta}{q} = \Delta_*, \ j = 0, 1, \dots, q-1.$ Обозначим

$$U_{p,r}^{\beta,\Gamma,\Gamma_*} = \{u(\cdot) \in U_{p,r}^{\beta,\Gamma} : \|u(\xi)\| = \alpha_{j_i}$$
 для всех $\xi \in [\xi_i, \xi_{i+1}), i = 0, 1, \dots, N-1\}.$

Множество траекторий системы (1.1), порожденных функциями управления $u(\cdot) \in U_{p,r}^{\beta,\Gamma,\Gamma_*}$, обозначим символом $\mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*}$, и пусть

$$\theta\left(\Delta_{*}\right) = L_{*}(b-a)\Delta_{*},\tag{4.1}$$

где L_* определено соотношением (1.18).

Следующее утверждение характеризует хаусдорфово расстояние между множествами траекторий $\mathbf{X}_{p,r}^{\beta,\Gamma}$ и $\mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*}$.

Утверждение 8. Для любых $\beta > 0$, равномерного разбиения Γ отрезка [a,b] и равномерного разбиения Γ_* отрезка $[0,\beta]$ выполняется неравенство

$$h_C\left(\mathbf{X}_{p,r}^{\beta,\Gamma},\mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*}\right) \leq \theta(\Delta_*),$$

где Δ_* является диаметром разбиения Γ_* .

Д о к а з а т е л ь с т в о. Возьмем произвольную траекторию $x(\cdot) \in \mathbf{X}_{p,r}^{\beta,\Gamma}$, порожденную функцией управления $u(\cdot) \in U_{p,r}^{\beta,\Gamma}$. Согласно определению множества управлений $U_{p,r}^{\beta,\Gamma}$ имеем, что

$$u(\xi) = u_i, \quad \xi \in [\xi_i, \xi_{i+1}), \quad i = 0, 1, \dots, N-1,$$

$$||u_i|| \le \beta$$
, $i = 0, 1, \dots, N - 1$, $\Delta \cdot \sum_{i=0}^{N-1} ||u_i||^p \le r^p$.

Если $\|u_i\|<\beta$ для любых $i=0,1,\ldots,N-1$, то существуют $\alpha_{j_i}\in\Gamma_*$ такие, что

$$||u_i|| \in [\alpha_{j_i}, \alpha_{j_i+1}). \tag{4.2}$$

Определим новую функцию управления $u_*(\cdot):[a,b]\to\mathbb{R}^m$, полагая для $\xi\in[\xi_i,\xi_{i+1}),$ $i=0,1,\ldots,N-1,$

$$u_*(\xi) = \begin{cases} \frac{u_i}{\|u_i\|} \alpha_{j_i} &, \text{ если } 0 < \|u_i\| < \beta, \\ u_i &, \text{ если } \|u_i\| = 0 \text{ или } \|u_i\| = \beta, \end{cases}$$

$$(4.3)$$

где $\alpha_{j_i} \in \Gamma_*$, $i = 0, 1, \ldots, N-1$, определены соотношением (4.2). Если $\xi = b$, то принимаем, что $u_*(b) = u_*(\xi_{N-1})$. Нетрудно проверить, что $u_*(\cdot) \in U_{p,r}^{\beta,\Gamma,\Gamma_*}$ и

$$||u(\xi) - u_*(\xi)|| \le \Delta_* \tag{4.4}$$

при любых $\xi \in [a, b]$.

Пусть $x_*(\cdot)$ является траекторией системы (1.1), порожденной функцией управления $u_*(\cdot) \in U_{p,r}^{\beta,\Gamma,\Gamma_*}$, которая определена соотношением (4.3). Тогда $x_*(\cdot) \in \mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*}$, и из (4.1), (4.4) и утверждения 5 следует, что

$$||x(\xi) - x_*(\xi)|| \le L_*(b-a)\Delta_* = \theta(\Delta_*)$$

для всех $\xi \in [a,b]$. Из последнего неравенства вытекает, что

$$||x(\cdot) - x_*(\cdot)||_C \le \theta(\Delta_*). \tag{4.5}$$

Итак, окончательно получаем, что для каждой $x(\cdot) \in \mathbf{X}_{p,r}^{\beta,\Gamma}$ существует $x_*(\cdot) \in \mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*}$ такая, что выполняется неравенство (4.5), и, следовательно, справедливо включение

$$\mathbf{X}_{p,r}^{\beta,\Gamma} \subset \mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*} + \theta\left(\Delta_*\right) B_C. \tag{4.6}$$

Так как $\mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*}\subset\mathbf{X}_{p,r}^{\beta,\Gamma},$ то включение (4.6) завершает доказательство.

5. Конечное число траекторий

Пусть $S = \{x \in \mathbb{R}^m \colon ||x|| = 1\}$, $\sigma > 0$ и $S_{\sigma} = \{s_1, s_2, \dots, s_L\}$ является конечной σ -сетью на S. Определим новое множество функций управления, полагая

$$U_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma} = \left\{ u(\cdot) \in U_{p,r}^{\beta,\Gamma,\Gamma_*} \colon u(\xi) = \alpha_{j_i} s_{l_i}$$
 для всех $\xi \in [\xi_i, \xi_{i+1}),$ $\alpha_{j_i} \in \Gamma^*, \ s_{l_i} \in S_{\sigma}, \ i = 0, 1, \dots N-1 \right\}.$

Очевидно, что множество $U_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma}$ состоит из конечного числа управляющих функций. Отметим, что множество $U_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma}$ можно переопределить как

$$U_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma} = \left\{ u(\cdot) \in L_p\left([a,b] ; \mathbb{R}^m \right) : u(\xi) = \alpha_{j_i} s_{l_i}$$
 для всех $\xi \in [\xi_i, \xi_{i+1}),$ $\alpha_{j_i} \in \Gamma_*, \quad s_{l_i} \in S_\sigma, \quad i = 0, 1, \dots, N-1, \ \Delta \cdot \sum_{i=0}^{N-1} \alpha_{j_i}^p \leq r^p \right\}.$

Множество траекторий системы (1.1), порожденных функциями управления $u(\cdot) \in U_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma}$, обозначим символом $\mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma}$. Очевидно, что множество $\mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma}$ состоит из конечного числа траекторий. Положим

$$\kappa(\beta, \sigma) = L_*(b - a)\beta\sigma. \tag{5.1}$$

Утверждение 9. Для любых $\beta > 0$, равномерного разбиения Γ отрезка [a,b], равномерного разбиения Γ_* отрезка $[0,\beta]$ и $\sigma > 0$ выполняется неравенство

$$h_C\left(\mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*},\mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma}\right) \leq \kappa(\beta,\sigma).$$

Д о к а з а т е л ь с т в о. Возьмем произвольную траекторию $x(\cdot) \in \mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*}$, порожденную функцией управления $u(\cdot) \in U_{p,r}^{\beta,\Gamma,\Gamma_*}$. Из включения $u(\cdot) \in U_{p,r}^{\beta,\Gamma,\Gamma_*}$ следует, что

$$||u(\xi)|| = \alpha_{j_i}$$
 для всех $\xi \in [\xi_i, \xi_{i+1}), \quad \alpha_{j_i} \in \Gamma_*, \quad i = 0, 1, \dots, N-1,$ (5.2)

и числа $\alpha_{j_i} \in \Gamma_*, \, i=0,1,\ldots,N-1,$ удовлетворяют неравенствам

$$\Delta \cdot \sum_{i=0}^{N-1} \alpha_{j_i}^p \le r^p, \quad 0 \le \alpha_{j_i} \le \beta$$
 для всех $i = 0, 1, \dots, N-1.$ (5.3)

Из (5.2) вытекает, что существуют $b_i \in S, i = 0, 1, \dots, N-1$, такие, что

$$u(\xi) = \alpha_{j_i} b_i \tag{5.4}$$

для всех $\xi \in [\xi_i, \xi_{i+1}), i = 0, 1, \dots, N-1$. Поскольку $b_i \in S$, S_σ является σ -сетью на S, то для каждого $b_i \in S$ можно найти $s_{l_i} \in S_\sigma$ такой, что выполняется неравенство

$$||b_i - s_{l_i}|| \le \sigma, \quad i = 0, 1, \dots, N - 1.$$
 (5.5)

Определим новую функцию управления $\tilde{u}(\cdot):[a,b]\to\mathbb{R}^m$, где

$$\tilde{u}(\xi) = \alpha_{i} s_{l_i}$$
 для всех $\xi \in [\xi_i, \xi_{i+1}), \quad i = 0, 1, \dots, N-1.$ (5.6)

Из (5.3), (5.4), (5.5) и (5.6) следует, что $\tilde{u}(\cdot) \in U_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma}$ и

$$||u(\xi) - \tilde{u}(\xi)|| = \alpha_{j_i} ||b_i - s_{l_i}|| \le \beta \sigma$$

при всех $\xi \in [\xi_i, \xi_{i+1}), i = 0, 1, \dots, N-1$. Из последнего неравенства вытекает, что

$$||u(\xi) - \tilde{u}(\xi)|| \le \beta \sigma \tag{5.7}$$

при любых $\xi \in [a,b)$.

Пусть $\tilde{x}(\cdot)$ является траекторией системы (1.1), порожденной функцией управления $\tilde{u}(\cdot) \in U_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma}$, которая определена равенством (5.6). Тогда $\tilde{x}(\cdot) \in \mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma}$, и, учитывая (5.1), (5.7) и утверждение 5, имеем, что

$$||x(\xi) - \tilde{x}(\xi)|| < L_*(b-a)\beta\sigma = \kappa(\beta, \sigma)$$

при всех $\xi \in [a,b]$. Отсюда получаем, что

$$||x(\cdot) - \tilde{x}(\cdot)||_C \le \kappa(\beta, \sigma). \tag{5.8}$$

Итак, установили, что для каждой $x(\cdot) \in \mathbf{X}_p^{\beta,\Gamma,\Gamma_*}$ существует $\tilde{x}(\cdot) \in \mathbf{X}_p^{\beta,\Gamma,\Gamma_*,\sigma}$ такая, что неравенство (5.8) выполняется. Это означает, что справедливо включение

$$\mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*} \subset \mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma} + \kappa(\beta,\sigma)B_C. \tag{5.9}$$

Наконец, из включений $\mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma} \subset \mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*}$ и (5.9) получаем справедливость утверждения.

6. Основная оценка

Из утверждений 6-9 вытекает справедливость следующей теоремы.

Теорема 1. Для любых $\beta > 0$, равномерного разбиения Γ отрезка [a,b], равномерного разбиения Γ_* отрезка $[0,\beta]$ и $\sigma > 0$ выполняется неравенство

$$h_C\left(\mathbf{X}_{p,r}, \mathbf{X}_{p,r}^{\beta,\Gamma,\Gamma_*,\sigma}\right) \leq \frac{c_*}{\beta^{p-1}} + \chi(\Delta) + \theta(\Delta_*) + \kappa(\beta,\sigma).$$

Здесь Δ является диаметром разбиения Γ , а Δ_* — диаметром разбиения Γ_* ; c_* , $\chi(\Delta)$, $\theta(\Delta_*)$ и $\kappa(\beta,\sigma)$ определены соответственно соотношениями (2.1), (3.1), (4.1) и (5.1).

Из теоремы 1 вытекает справедливость следующей теоремы.

Теорема 2. Для любого $\varepsilon > 0$ существуют $\beta(\varepsilon) > 0$, $\delta(\varepsilon) > 0$, $\delta_*(\varepsilon) > 0$ и $\sigma_*(\varepsilon, \beta(\varepsilon)) > 0$ такие, что для всех $\Delta \in (0, \delta(\varepsilon))$, $\Delta_* \in (0, \delta_*(\varepsilon))$, $\sigma \in (0, \sigma_*(\varepsilon, \beta(\varepsilon)))$ справедливо неравенство

$$h_C\left(\mathbf{X}_{p,r}, \mathbf{X}_{p,r}^{\beta(\varepsilon),\Gamma,\Gamma_*,\sigma}\right) < \varepsilon,$$

где Δ является диаметром разбиения Γ , а Δ_* — диаметром разбиения Γ_* .

СПИСОК ЛИТЕРАТУРЫ

- Angell T.S., George R.K, Sharma J.P. Controllability of Urysohn integral inclusions of Volterra type // Electron. J. Diff. Eq. 2010. No. 79. P. 1–12.
- 2. **Appell J., Kalitvin A.S., Zabreiko P.P.** Boundary value problems for integro-differential equations of Barbashin type // J. Integr. Equ. Appl. 1994. Vol. 6, no. 1. P. 1–30.
- 3. **Balder E.J.** On existence problems for the optimal control of certain nonlinear integral equations of Urysohn type // J. Optim. Theory Appl. 1984. Vol. 42, no. 3. P. 447–465.
- 4. **Bennati M.L.** An existence theorem for optimal controls of systems defined by Urysohn integral equations // Ann. Mat. Pura Appl. 1979. Vol. 121, no. 4. P. 187–197.
- 5. **Brauer F.** On a nonlinear integral equation for population growth problems // SIAM J. Math. Anal. 1975. Vol. 6. P. 312–317.
- Browder F.E. Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type // Contributions to nonlinear functional analysis: Proc. Sympos. New York: Acad. Press, 1971. P. 425–500.
- 7. **Huseyin A.** On the approximation of the set of trajectories of control system described by a Volterra integral equation // Nonlin. Anal. Model. Contr. 2014. Vol. 19, no. 2. P. 199–208.
- 8. **Huseyin A., Huseyin N.** Precompactness of the set of trajectories of the controllable system described by a nonlinear Volterra integral equation // Math. Model. Anal. 2012. Vol. 17, no. 5. P. 686–695.
- 9. **Красносельский М.А., Крейн С.Г.** О принципе усреднения в нелинейной механике // Успехи мат. наук. 1955. Т. 10, вып. 10 (65). С. 147–152.
- Polyanin A.D., Manzhirov A.V. Handbook of integral equations. Boca Raton: CRC Press, 1998.
 787 p.
- 11. **Урысон П.С.** Об одном типе нелинейных интегральных уравнений // Мат. сб. 1923. Т. 31, № 2. С. 236–255.
- Vainikko G., Zolk I. Fast spline quasicollocation solvers of integral equations // Math. Model. Anal. 2007. Vol. 12, no. 4. P. 515–538.
- 13. **Chentsov A.G.** Approximative realization of integral constraints and generalized constructions in the class of vector finitely additive measures // Proc. Steklov Inst. Math. 2002. Suppl. 2. P. S10–S60.
- 14. Conti R. Problemi di Controllo e di Controllo Ottimale. Torino: UTET, 1974. 239 p.
- 15. **Guseinov Kh.G., Neznakhin A.A., Ushakov V.N.** Approximate construction of reachable sets of control systems with integral constraints on the controls // J. Appl. Math. Mech. 1999. Vol. 63, no. 4. P. 557–567.
- 16. **Guseinov Kh.G.** Approximation of the attainable sets of the nonlinear control systems with integral constraint on controls // Nonlinear Anal. 2009. Vol. 71, no. 1-2. P. 622–645.

- 17. Красовский Н.Н. Теория управления движением: Линейные системы. М.: Наука, 1968. 476 с.
- 18. **Красовский Н.Н., Субботин А.И., Ушаков В.Н.** Минимаксная дифференциальная игра // Докл. АН СССР. 1972. Т. 206, № 2. С. 277–280.
- 19. Subbotina N.N., Subbotin A.I. Alternative for the encounter-evasion differential game with constraints on the momenta of the players controls // J. Appl. Math. Mech. 1975. Vol. 39, no. 3. P. 376–385.
- 20. Subbotin A.I., Ushakov V.N. Alternative for an encounter-evasion differential game with integral constraints on the players controls // J. Appl. Math. Mech. 1975. Vol. 39, no. 3. P. 367–375.
- 21. **Ushakov V.N.** Extremal strategies in differential games with integral constraints // J. Appl. Math. Mech. 1972. Vol. 36, no. 1. P. 12–19.
- 22. **Ухоботов В.И.** Метод одномерного проектирования в линейных дифференциальных играх с интегральными ограничениями. Челябинск: Изд-во ЧелГУ, 2005. 124 с.
- 23. Vdovina O.I., Sesekin A.N. Numerical construction of attainability domains for systems with impulse control // Proc. Steklov Inst. Math. 2005. Suppl. 1. P. S246–S255.

Гусейин Несир

Поступила 10.12.2014

д-р философии

исследователь

Университет Джумхурийет, Турция

e-mail: nesirhuseyin@gmail.com

Гусейин Анар д-р философии исследователь

Университет Джумхурийет, Турция

e-mail: huseyin2718@gmail.com

Гусейнов Халик Гаракиши оглы д-р физ.-мат. наук, профессор исследователь Университет Анадолу, Турция

e-mail: kguseynov@anadolu.edu.tr