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V. KNOPOVA

ASYMPTOTIC BEHAVIOUR OF THE DISTRIBUTION DENSITY OF
SOME LEVY FUNCTIONALS IN R"

The paper is devoted to the asymptotic behaviour of the distribution density of some
Lévy functionals in R™. We generalize the results obtained in [18] for the case when
0(t) + ||z|| — oo, where 0(t) is some ”scaling” function, and (¢, z) belong to a suitable
domain of R4 x R™.

1. INTRODUCTION

The objective of this paper is to find the exact asymptotic behaviour of certain Lévy
functionals in R™. The one-dimensional situation is studied in detail in [18] and (in
the case of fractional Lévy motion with 0 < H < 1) in [19], see also [20] for the upper
estimate for the transition probability density of Lévy and affine processes. The approach
developed in this paper relies on the n-dimensional version of the saddle point method.
We start with some preliminary notions.

Let (X¢)¢>0 be a real-valued Lévy process on a probability space (€2, F, P) with the
state space R™. Its characteristic function can be written as

(1.1) Eei# Xt = (=) >0,

where the characteristic exponent 1) : R™ — C admits the Lévy-Khinchin representation
1 .

(1.2) v =ia-z =gz Qe [ (- 1- iz i) u(du),

where a € R™, Q € R™*"™ is a positive semi-definite matrix, and p(dy) is a Lévy measure,
i.e. a measure on R™ such that [, (1A |ly||*) u(dy) < co. In what follows we assume
that p satisfies the exponential integrability condition:

(1.3) / e“Y u(dy) < oo for all a € R™.
lyl=1

Finally, we assume that @ = 0 and that p is centered, i.e. that ¥ can be written as
P(z) = / (€% —1—iz-u) p(du).

Let T, I C R, (t,s) € T x I; let F(t,s) = (Fi;(t,8))i;=1 be an n x n matrix-valued
function with real-valued elements, bounded in s for fixed ¢, such that

(1.4) / |F(t, s)||?ds < 0o forallt € T.
I
Under (1.4) and (1.3) the Lévy driven stochastic integral

(1.5) Yt::/fr"(t,s)dXs, LET,
I
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36 V. KNOPOVA

is well-defined as a limit in Ly of the respective integral sums, see [15], p.152-158. Our
goal is to find the conditions under which the distribution density of Y; exists, and to
investigate its asymptotic behaviour.

Similarly to the Lévy case, the characteristic function of ¥; can be written explicitly:
(1.6)

Fe'#Yt = exp {// (eiz'?(t’s)“ —1—iz-F(t, s)u) u(du)ds] , zeR" teT.
I n

For n = 1 the representation (1.6) was obtained in [27], Theorem 2.7; in the general case
(1.6) can be obtained in the same way. We denote by ®(t, z) the characteristic exponent
of Y;.

Under certain condition (see (2.3) or (2.4) below) the function e®(*) is integrable,
and hence the distribution density p¢(x) of the process Y; exists and admits the integral
representation as the inverse Fourier transform of the characteristic function (1.6):

(1.7) pe(x) = L/ ez aHe(t2) g

(2m)"™ Jgn
We investigate the integral (1.7) by developing the multi-dimensional version of the
saddle point method, see [14], also [13] for the one-dimensional case. First, applying the
Cauchy-Poincaré theorem (see [30]) we change the integration domain in (1.7):

1 .
(1.8) () = _n/ oiF e e(te) gy
(2m)" Jie(t,.2)+me

where £(t,2) € R™ will be specified below. Then we use a version of the saddle point
method to investigate the asymptotic behaviour of the integral (1.8), see [18] for the
result in the one dimensional case.

Estimates for the transition probability density of Lévy and, more generally, Markov
processes, received a lot of attention during the last years, see [7], [1], [2], [11], [12], [8],
[9], [10], [20], [16]. Although the classes of processes which can be investigated by our
method, and those, treated in [8], [10] intersect, they are substantially different. For
example, our approach does not apply to many symmetric Markov processes treated
in [8] and [10], but can be applied for non-symmetric Markov processes, such as the
Lévy driven Ornstein-Uhlenbeck process, as well as for non-Markov processes such as
the fractional Lévy motion.

The paper is organized as follows. The main result is contained in Section 2, Theo-
rem 2.1. It states that under certain assumptions on the Lévy measure and the kernel &
the distribution density p;(z) satisfies

(1L9)  pule) ~ me%@), 6(t) + llz] — o0, (t,7) €A C T xR,

where the functions 6, D and X are explicitly described. In Section 3 we give some
examples under which the assumptions of Theorem 2.1 are satisfied. In Section 3.1 we
study the fixed time case; in Section 3.2 we investigate the situation when the kernel F
satisfies some self-similarity assumption, which makes it possible to write the asymptotic
representation (1.9) in a more explicit form reflecting the structure of F. In Section 4 we
prove the ratio limit theorem for the distribution density p(z) of X; as ||z|| — oo.

2. MAIN RESULT

2.1. Settings. Let [|z| := /a4 ...+ 22 for x € R"; ||A]| := sup, Hl":‘jﬁ” for n x n
matrix A; S™ denotes a sphere in R™, ¢ is unit vector; x - y is the scalar product in R".
We write f =< g, if for some positive constants ¢, co we have 1 f < g < caf; f ~ g (resp.,

f<g, [f>g)asz — 0 iflimm_,oo% =1 (resp, =0, = 0).
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Denote by ¢ the image measure of dsu(du) under the mapping I x R"™ 3 (s,u) +—
£-F(s,t)u € R. In what follows we assume that

(2.1) zlensgl pee(Ry) > 0.

Fort € T, z € R"™, define
(2.2) A(t,z) == —Re ®(t,2) = // (1 —cos(z - F(t, s)u))u(du)ds.
s,u)EIXR™

If for a given ¢ € T and ||z|| > R, where R is large enough, we have for some 6 > 0
(2.3) At,2) > (k+n+0)In]z|, k>0,

then Y; has a distribution density p;, which belongs to the class le (R™) of k times
differentiable functions, whose derivatives are bounded. Indeed, under (2.3) we have
le®®:2)| < ||z||~("+k+9) for ||z|| > R, which implies the statement. In particular, if for a
givent € T

(2.4) A(t,z) > n||z|| as |z|| — oo,

then Y; has a distribution density p, € C;°. Conditions (2.3) and (2.4) are modifications
of the Hartman-Wintner condition [17], see also [21] for the equivalent conditions in the
case of a Lévy process.

Let

(2.5) Mo(t, &) := /I/" (eg'g(t’s)“ —1—&-F(t, s)u)u(du)ds,

(2.6) M;(t,€) = /1 / n(s(t,s)u)i(ef-%s)u—1)u(du)ds, i=1,..,n,

k
(2.7) meﬂﬁﬁﬁi// [1&E s)u)i e 7O u(duyds, k> 2
I n l*l

and put
(2~8) M := ]M(t,f) = (Mij(tag))?,j:1 .
The matrix IM is positive semi-definite: for any z € C"

(Mz,2) = 3 /1 / (3t s)u)s - 5 (T )y e T u(du)ds

i,j=1

“J ke

In the sequel we assume that
(A0) for all (¢,£) € T x R™ the matrix IM is non-degenerate.

(2.9)

n 2
Z(g(tv s)u); - zi| TG (du)ds > 0.
i=1

Denote by \;(t,€), i = 1,..,n, the eigenvalues of M. By non-degeneracy of M we have
Ai(t,€) > 0,7 =1,..,n. Wedenote by Apnaz(t,€) and Apin (¢, €), respectively, the maximal
and the minimal eigenvalues of IM. Recall that

(210) D = (86, M = max A7 E) = Ak ().
and that the eigenvalues of IM? and IM'/? are, respectively, A\2(t,£) and )\3/2(15,{), 1=
1,..n.

Let

U(t,z) = P(t,—z) = // (e*iz'g(t’s)“ —1+iz- 3(t, s)u) u(du)ds, teT, =zeC".
I n



38 V. KNOPOVA

Since for fixed t the elements of F are bounded in s, the exponential integrability as-
sumption (1.3) implies that for ¢ € T the function ¥(¢, z) is well defined and analytic in
C™ with respect to z. Making the change of variables z — —z we can rewrite (1.7) as

(2.11) () = (2717)" /n HErD) g, g e R,

where

(2.12) H(t,z,z) =iz -2+ V(¢ z).

Observe that (%)Z,Zﬂ = M(t,&), € € R*. Since M is positive definite, the

function H(¢,xz,-) is convex on ¢R™. Hence there exists at most one solution to the
equation grade H(t, x,i€) = 0, or, equivalently, the solution to

(2.13) T = /1 / ) F(t, s)u(eSTEHDY — 1) u(du)ds.

By (2.1), there exists U C Ry such that inf,ecsn gz ¢(U) > 0. Since

i) = llzllv _ 1 — > lzllv _ 1 —
U(t,iz) /]R(e 1 Hz||v),ugz(dv)7emf (e 1 Hz||v),ut’g(dv),

esm Jur
where £, := =, the function U(t,i-) is coercive, i.e.
W(t,1
(2.14) timinf 28 o
leli—oo [I<]

which implies the existence of the solution & = £(¢,x) to (2.13) (see also Example 11.9
from [28]). Moreover, by (2.13) we have x - £ > 0, and [|£(¢, 2)|| — oo as ||z]| — oc.
Define for A C R

(2.15) Ot r, A) = inf / / (1 = cos(rt - F(t, s)u))u(du)ds,
£es™ J Jo.g(t,s)ucA

(s,u)€l XR™

and
D(t,z) := H(t,x,i€(t,x)), K(t,z):=detM(¢,&(t,x)) = Hx\i(t,ﬁ(t,m)).
i=1
When it does not lead to misunderstanding, we write £ instead of £(¢, x).
Let A C T x R”,
T:={t:Jx e R", (t,x) e A}, B:={(E&kx)): (t,z) € A}

Finally, let 6 and x be two functions, such that 6 : T — (0, +00) is bounded away from
zero on T, and x : T — (0,400) is bounded away from zero on every set {t : 0(t) < c},
c > 0. As we will see below, these functions reflect the structure of the kernel F.

2.2. Formulation and the proof.

Theorem 2.1. Assume that the Assumptions (A0) and (A1) — (A4) below are satisfied:
(AL) s DG )] € N (1Nl (1,8), a5 000) + ]| — o0, (1,6) € B;

(42)
| max|Miji (£, )| .
In ((X (t)m V 1) + In (h’l[(]. V X (t)))\maw(t7 6)} v ]‘)
<In6(t) + x(@)[€]l,
as 0(t) + [[€]l — oo, (t,€) € B;



ASYMPTOTIC BEHAVIOUR OF THE DISTRIBUTION DENSITY 39

(A3) There exists R > 0 and § > 0 such that
O, r,Ry) > (n+ ) In(x®)r), teT, r>R;
(A4) There exists r > 0 such that for every e >0
f O(t, b, [x(1)r. o)) > 0(1) ((ex(1))? A1)

Then for every t € T the law of Yy has a continuous bounded distribution density p;(x),
and

x N;emm) z|| — o0 x
(2.16) pie(x) TR D) o 00) + [« () e Al

Proof. Step 1: changing the integration contour. We prove that

1 / H(tyz,2) 1 / H(twn+i
e\ dy = eHton+iet.o) gy
(2m)n i&(t,x)+R" (2m)™ Jgn

For this we apply the Cauchy-Poincaré theorem, see [20] for similar argument in the case
of a Lévy process. Consider the domain

217) o) =

G:=92z€eC" : Imz=v{(t,z),0<v<1, Rez € H[—Mj,Mj],Mj >0,1<j<n
j=1

This is an n + 1-dimensional cube with base

z€C" : Rez € H[—Mj,Mj], Imz=0
j=1

and lid

z€C™ : Rez € H[—Mj,Mj], Imz = (¢, x)

Jj=1

Since the number of sides of G is even, we can fix some orientation on dG such that base
and lid have opposite orientation. By the Cauchy-Poincaré theorem

(2.18) / Hw2) g Adzg A -+ Adzy, = 0.
oG
Consider the integrals over the sides (except the base and the lid)
1
(2.19) / eHbo MEWED) gy - where M = (M, ..., +M,).
0

By definition,
(2.20)
ReH(t,z,n+if) = —x- & — / / (1 — 8T cog(n - F(t, s)u) + € - F(t, s)u)u(du)ds
I n

= H(t,x,i§) — /I/n et I (ts)u (1 — cos(n - F(t, s)u))u(du)ds, &neR™

As we have shown above, the function £ — H(t,x,i€) is real-valued, convex, and attains
its minimal value at the point £(¢,x). Then H(t,x,iw€) < H(t,2,0) =0 for 0 < v < 1.
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On the other hand,
/ / ST (L — cos(n - F(t, s)u))u(du)ds
I n
> / / (1 = cos(y - F(t, s)u))u(du)ds
Le-F(t,8)u>0

(s, u)EIXR"™,

> inf // (1 — cos(|[n]l¢ - F(t, s)u))u(du)ds
£es™ J Jo.g(t,s)u>0

(s,u)EIXR™,

=O(t, I, R+ ).
Therefore
Re H(t,z,£M + ivé(t,z)) < —O(t, | M|,R+), v e]0,1].

Thus, condition (A3) implies that the integrals in (2.19) tend to 0 as || M|| — o0, which
gives (2.17). Since p:(z) is real-valued, we derive from (2.17)

1 xr
(271-)n/ efiltz.m) cos(I(t,z,n))dn,

(2.21) pila) =

where
(222)  R(t,x,n) :=ReH(t,x,n+i&(t,z)), I(t,x,n):=ImH(t, z,n+ it z)),

and

(2.23) ImH(t,x,n+if)=x-n— // (ef'g(t’s)“ sin(n - u) —n - F(t, s)u) w(du)ds.
1 JRe

Step 2: choosing «, 5. Split the integral (2.21) into the sum

el R Y B (Gl
— + + e T cos I(t, x,m) dn
(2.24) (27) [ Inli<a  Jlnle(e.s] Hn\|>6] ( )
= J1(t, l‘) + Jg(t, JZ) + Jg(t, JZ),

where
Amin (8, €(t, @)

2.25 = B(t,z) == ,
(229) = Jn@;%;mw(t,f(t,x))
and « = a(t, z) is chosen such that

1 Amin(t,&(t, )
2.26 — < ’(t7) < ,
(220) O ) P A 8]
and

1
max| Miji (£, (1, 2))|”

(2.27) At r) < 0(t) + ||| — oo, (t,x) € A.

Let us show that such «a(t, x) exists. By the Cauchy inequality and (A1) we have
(2.28)  [Min(t, €)1 < max| M (¢, ) max| Mijea (£, §)] < Xnin (£ €)
0@t) + [[€]l = o0, (t,€) € B.
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Therefore, by (A1) and (2.28) there exists a function k(¢, ) such that

)‘min (t, f)

1< k(t,é) < T
I?j%f‘Mijkl(ta 3k

)

- )« —2m000 g e e (e e s
rrl,lj.e}CX\Mmk(t,ﬁ)\ﬁ

Chose

(2.30) a(t,z) = ck(t, &(t, x))A mm(t &(t, o)),

where ¢ > 0 is some constant. Then « satisfies (2.26) and (2.27). Since k(t, £) is locally
bounded, the constant ¢ can be chosen such that

0<alt,r) <B(t,x), 0)+|z] — o0, (ta)edA
Step 3: estimating J1(t,x) in (2.24). We have

88 (t,z,m) // ST F (¢t s)u); sin(n - F(t, s)u)p(du)ds,
i n

(2.31) a%R(t,x ”)’n:o =0, ﬁiamcmt,x,n) o 0, ij.ke{l,..,n},
62
amanj R(t,x 7"7 //n (t, ) F(t, s)u)jeg'g(t,s)u cos(n - F(t, s)u)u(du)ds o
= —M;;(t,&(t, @),
84
’WR(t’x’”)’: // s)u), cos(n - F(t, syu)e T u(du)ds

L= 1]kl
|Mijkl(ta§)|’ Zvjak7l € {1,,71}

IN

Therefore decomposing cos(n - F(t, s)u) in the representation of #;mR(t,x, n) we get
for some n* from the segment joining 0 and 7 '

(V*Rn,n) : = oo R(t,z,m)nin;
ij=1
= - i (£ &)Min; 17 )N MR-
g::lmg( Emin; + ”; 0n28ngankam R(t, " ymin; e

For all n € R

\ Z amanjankam R(t. . nmenymen | < mias Mg (8, )’ ]

m,aX\Mijkl (t,6)]
2

<n W( n,m)|nll”
My #0 Ty

maX‘MUkl(tv 6)‘
ijkl

:n2 M b 27
pW—r (MM, n) (Il

(2.32)
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where we used

o (Mo,v) LSRG Mo

in - = inf ———— sup ——s—

llizo ol feli#o ol oo Il

1\ L
= ( max —) = mln i = Amin-
1= n >\ i=1,.
We have for ||n|| < a, where « is defined in (2.30),
max|Mijni] max|Mijii|
(M, ) (14 n2a? L) < (V2R ) < —(Mn, ) (1 - n2a? 25—,

By the right-hand side estimate on « in (2.26)

(2.33) ‘lﬁlf (V2Rn,n) ~ sup (V2Rn,n) ~ —(Mn,n), 0(t) +|jzl| — o0, (t,z) € A.
Inll<a

Similarly to (2.31), for all ¢, j, k € {1,..,n}

I(t,z,n) =0,

0
o], = gplten),_, = g 16|,

n=0 5771‘
‘Lf(t x )‘ < Mii(t,€)], forallpeR"
anz a’r}] ank ) ) 77 — ij ) ) 77 °
(the equality for 3%1_[ is due to the fact that i€(¢, x) is a critical point of H(¢,z,-)). By

the estimate (2.27) on « we get decomposing sin(n - F(¢, s)u) in the representation for
I(t,z,n) and using the inequality

n 3
(sz—) < 02|zl

i=1

and

(2.34)  sup |[I(t,z,n)| < —max\MUk(t Ola® =0, 0(t)+ ||z]| — oo, (tz)€A.

Il <a
Recall our notation X(¢,z) = det M(¢, (¢, x)) and

D(t,z) = H(t,z,i&(t,x)) = R(t, z,0).
From (2.33) and (2.34) we get

/ eR(t,w’W) cos I(t, z, 77)d77 ~ e R(t,z,0) / o= (1M727,71) d’l]
Inll<a Inll<c

(2.35) - )2
Dt / —ﬂd’l].
t ZL' M~ 2'uH<a 2

The integral on the right-hand side can be estimated as

llv)2 lv)2

/ € 4 </ € <1
—dv < —dv < 1.
lol<ars,, (2m)% M- 3o <a (27)%

By (2.26), the left-hand side tends to 1 as ||| — co. Therefore

1
(236) J](t,l') ~ WED(t’I), H(t) + H.’E” — 00, (t,l’) e A.
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Step 4: proving that Jo(t, ) is negligible. Decompose R(t,x,n) in Taylor series:

R(t,x,n) = R(t,x,0) ~ 5 Z M (t, &, z))nin;

4,5=1

1 i L
+ S A -
4 ij%l:fl anzaﬁjankam ( n )77 NNk

where we used that

82
—— R, z, =M, (¢, €, x)), j=1,...,n,
onion; it 77)|7,,0 i(t.&(t @) %7 n

and n* is some point on the segment joining 0 and 7. From (2.25) and (2.32) we have
for [|n|] < 3

Y  RGt.=x z "
’ Z 0n;0n; OOy R(t,z,m%)mi Mk < (Mn, n).

Thus for ||n|| <
11
R(t,z,n) < R(t,z,0) — o (Mn, n)

which, together with the lower estimate for « in (2.26), gives

(2.37)

|Jo(t, x)| < / eRbmm) gy < eR(t,m,O)/ e—%(]Mn,n)d77
Inll € (,8] lInll>a

B eD(t,x)
VKt z) Jim zq)>a

Step 5: proving that Js(t,x) in (2.24) is negligible. By (2.20),

el ay < Ji(t,2), 0(t) + ||z = 00, (t,2) € A.

J3(t,x)| < efiltzm) g
1
lnll>8

< eD(t’I)/ exp {— // ST (1 — cos(n - F(t, s)u)),u(du)ds} dn.
lInll>8 1JR"

Therefore, by (2.36), to prove
J3(t,x) < J1(t,x)

we need to check that
(2.38) / A gy« K(t,2) V2, () + 7] — 00, (£ ) € A,
Inll>23

where

A(t,z,m) = // £ T () _ cos(n - F(t, s)u))u(du)ds.
I n
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We have for any o € (0,1) and some r > 0

At z,n) > / / el T ws)u (1 — cos(y - F(t, s)u))u(du)ds
Le-F(t,8)u>0

(s,u)€lXR™

> (1-0) / /[ g S0 T s+

(s,u)€IXR™

+ gerxliél / / (1 = cos(n - F(t, s)u))u(du)ds
Zg ?(t 9)u>X(t)7"

(s,u)€IXR™

(1 -0) inf // I (1 =cos(||n||€ - F(t, s)u))p(du)ds

ZES”

(2.39)

(s,u)€IXR™

+oexel g [ N (I GO

Lesn
(§ u)GIX]R"

> (1= 0)0(t, ], Ry.) + oeXOIElo(t, 1], [x(t)r, 00)),

where O is defined in (2.15). Choosing o such that (1 — o)(n + ) > n we have by (A3)
(2.40)

/ e~ (=)0l BL) gy < ¢ +/ e~ (=) 48 M2 g, < ) (1 y an(t))
" == R

where ¢1, ¢co > 0 are independent of ¢, and R is given by (A3). Therefore, in view of
(2.40) and (A4), to show (2.38) it is enough to prove for every o > 0

(241) (v xT(O)exp [—oeOIEla) (B(t 2)x(6)? A1)| < Kt 2) 2,

as 0(t) + ||z|| — oo, (t,z) € A. By the definition (2.25) of 5(t, x), we have

-1
n?max|M; ;i (¢, E(t, )|
igkl

(2.42) ((ﬁ(t,x)x(t))”l): (X_2(t) Noin (4 €8, 2)) )w

Observe that (A2) implies
max| M (£, €)|
(XfQ(t)/\'—(tg)) V1] In((1VxT"()Amae(t,€)) < of(t)erx®lEl,

as 0(t) +||€|| — oo, (t,€) € B. By the definition of the set B this relation, combined with
(2.42) and the estimate K(t,z) < A" (¢, &(t, x)), yields

In ( (1V ()Xt x)) < of(t)e Xl ((ﬁ(t,x)x(t))Q A 1),
0(t) + llzfl = oo, (t,2) €A,
which in turn implies (2.41). Thus,

Ja(t,x) < Ji(t,x) as O(t) + [[€] — oo,
(t,€) € A.

Combining the results obtained on the steps 3, 4 and 5, we arrive at the statement of
the theorem. 0
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3. EXPLICIT CONDITIONS

In this section we give some explicit conditions under which the assumptions of The-
orem 2.1 are easy to verify. To simplify the formulation we assume that the matrix F
is of the form F(t, s) = f(t, s)I, where I is the identity matrix, and f(¢,-) is a bounded
function, satisfying

(3.1) /IfQ(t,s)ds < 00

and

(3.2) /(f(t,s) vV0)%ds >0, teT.
I

For such a kernel we can use a simplified version of condition (2.1). Let f(s) = f(1,s),
and let py(-) be the image measure of ds pu(du) under the mapping

IxR"> (s,u) — f(s)u-£Le€R.
We assume that py(-) satisfies

(3.3) Jof pe(Re) > 0.

First we consider the fixed time setting; then under the assumption that f satisfies some
self-similarity assumption we show that conditions (A1)-(A4) hold for ¢ € T provided
that they hold for ¢t = 1.

3.1. Case t = 1. To simplify the notation, we drop the index ¢t where appropriate. In
particular, we write M;, ;, (§) = M,, ;. (1,£), and ©(r, A) = O(1,r, A), r > 0.
When ¢ =1 the assumptions (A1) — (A4) reduce to the following:

(AY) max Mg (€)] € Non (A (©) 2 1] = oc.
(42')
I%%f(lmijkz 3]
RGE
(A3’) There exists R > 0 and § > 0 such that for all r > R
(3.4) O(r,Ry) > (n+0)Inr;
(A4") There exists ¢ > 0 and ¢ > 0 such that for all € > 0
(3.5) }i};f;@(h, [q,00)) > c(e2 A 1).

V1 +In(InAmae(§) V1) <[], as [|€]] — oo

Sometimes it is possible to show the stronger condition than (A3’'):

(43")
(3.6) O(r,Ry) > Inr, r— +oo.

We show that (A3”) holds true under some restrictions on the kernel f and the non-
degeneracy condition on . We assume that f satisfies one of the assumptions below;
these assumptions are taken from [18], where they are discussed in detail.

(F1) [;(f(s)Vv0)*ds > 0.

(F) On some interval [a,b] C I, the function f is positive and has a continuous
non-zero derivative.

(F3) On some interval (—oo,b] C I, the function f is positive, convex, and has at most
exponential decay at —oo; that is, there exists v > 0 such that

(3.7) gggloo e 7 f(s) = 4o0.
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(F4) On some interval (—oo,b) C I, the function f is positive, convex, and has a
subexponential decay at —oo; that is, (3.7) holds true for every v > 0.
Note that the conditions (F;) become more strong with increase of i. Let p,(-) :=

p1,0(+), £ € S™. We assume also that p satisfies one of the assumptions below:
(N7)

(55) wt [ (- 2Pldu) > 2], ] = oc
E8" St <2
™)
(3:9) [ w2 At > =], o] = oc;

(N3) juf pe(Ry) = +oo;
oL
(N3) jmf pe(Ry) > 0.

As in the one-dimensional case, the conditions N/ become more mild when 4 increases
from 1 to 4.
The Lemma below generalizes the one dimensional result proved in [18]. Let

(3.10) F :=esssup f(s).
sel

For ¢ > 0, £ € S™, define
(3.11) Voo ={ueR": u-l>q}.

Lemma 3.1. Assume that for some i =1,...,4 conditions (N!) + (F;) hold true. Then
(A3”) is satisfied.

Proof. Case i =1. By the left-hand side inequality in
(3.12) (I —cosl)|z[’Li;j<1 £ 1—cosz < 2(|z]* Al), z€R,

we have

O(r,R4+) > inf // - (1 —cos(rf(s)l-u))u(du)ds

Lesn

O<f( )u o<1

> (1 — cos1)r? inf // (5)(£ - u)?p(du)ds
Lesr su)EIX]R"

0< f(s)u-b<r—1

(1 —cosl)r /fJr )ds inf / (u - 0)?pu(du).
LeS™ Jocu-t<(Fr)-1

Thus, for ¢ = 1 the statement is implied by (3.8).
Case i = 2. The statement follows from (N}) and the estimate

b
(3.13) / (1= cos(@f(s))ds > c(z2 A1), z€R,

see [18] for details.
Case i = 3, 4. The inequality

b
(3.14) / (1 —cos(zf(s)))ds >cln|z|, zeR,
holds true (i) for some ¢ > 0 and |z| large enough provided that f satisfies (F3); (ii) for
every ¢ > 0 and |z| large enough provided that f satisfies (Fy), see [18].
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In the case i = 3, take ¢ > 0 and @ > 0 such that (3.14) holds true for |x| > @). Then
for r > ¢71Q

(3.15) 6(Ry) 2 inf / [ (= costrf(s)u- 0) nlauyds

> Celensf;ﬂ[(%’l) In(gr).

Since

(3.16) Jnf w(Voe) = inf pe(g, 00)) >0,

by (N5) we derive from the above inequality that ©(r,R;) > Clnr for any C large
enough, which implies (A3").
In the case i = 4, assumption (N}) implies the existence of ¢ > 0 for which (3.16)

holds true. Since for ¢ = 4 we can take ¢ in (3.15) arbitrary large we again arrive at
(A3"). |

Lemma 3.2. Conditions (F2)+(3.3) imply (A4") for ¢ > 0 small enough.

Proof. Without loss of generality assume that f is positive on [a,b]. Take p > 0 such
that einsf 1#(Vp,e) > 0. Then, for 0 < ¢ < pminge(q) f(s), we have by (3.13)
csn

O(r, g, +o0)) > 1nf/v / (1 —cos(rf(s)u-£))dsu(du)

£esn

S o 20, )2 S o 2
> cinf /V (P02 )uta) 2 int Vi) (07 1)

which implies the required estimate. O

Analogously to the one-dimension case we say that the measure v satisfies the Cramer’s
condition, if for any € > 0

sup
llzll =

[ emevtan)| < vwe),

Under the assumption that v has finite second moment this condition leads to

(3.17) E(e) = Hihli / (1 —cosz-y)v(dy) > c(e? A1) forall e > 0.
zZl|lz€ n
Lemma 3.3. Assume that [ satisfies assumption (F1), and for some p >0
(3.18) inf inf / (1 — cos(hl - w))u(dy) > (2 A1) for all e > 0.
h|>e tesm Jy

Then (A4’) holds true for some q > 0 small enough.
Proof. Take g < vFp with F' = esssup,;f(s) and some v € (0,1). Then

O(h,[g,0)) = inf / /f o, (U cORT () ) )

Lesn
(s,u)EIXRM
> inf / / (1 — cos(hf(s)u - £)) dsp(du)
Lesn f(s)>yF,ueV,
> nf inf 1 —cos(hf(s)u-£ du)| ds
> /f e L [ 0= coslhf(9)u-0) )

> o(vFe)* A1) / ds,
f(s)>yF
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where we used (3.18) in the third line. Since the set {s : f(s) > 7F} has positive
Lebesgue measure, we obtain the required estimate. O

Now we are ready to formulate the fixed-time version of Theorem 2.1. Let

p(z) = p1(z),
D(x) = D(1, ),
K(z) = K(1, z).

Theorem 3.1. Suppose that p satisfies assumptions (Al’) and (A2"). In addition, sup-

pose that p and f satisfy one of the assumptions (N]) and (F;), i = 1,..,4, respectively.

In the case i = 1 we assume in addition that p satisfies the Cramer’s condition (3.18).
Then

1
3.19 )~ P@ 2] = 0.
(3.19) p(z) R [Ed|

The proof follows from Lemmas 3.1-3.3 above.

Let us give two examples when the conditions (A1’) and (A2’) are satisfied. For
simplicity we consider the two-dimensional case.

Recall that the function

0Q(§) = sup{¢ - u,u € Q}

is called the support function (cf. [29]) of the set Q). By definition, o¢(§) is positive
homogeneous, i.e. og(az) = acg(x) for a > 0.

Example 3.1. Suppose that f(s) > 0 for all s € I, and the support @ of the Lévy
measure p is bounded. By (3.3), there exists a subset Qg C @, such that and

(3.20) 00 == zigsgaQo (¢) > 0.
Observe that for any € > 0
(3.21) e(1=e)Foq,(€) My, 4, (6) < e(1+e)Fog, (&)

where F' is the essential supremum of f(s) on I (cf. (3.10)). Observe that the same
asymptotic relations hold for Ay (€) and Apeq(€):

e(1=e)Foqy(§) Amin(€) < Amaz(€) < e(1+e)Fog, (g)7
which implies (A1’):
m%f( ‘Mmkl(gﬂ < €(1+E)FUQO (©) < 6(2745)}7‘7@0 &) < )\3 (g))\fl (5)
ij

Further, for any € > 0
max| M (£)]
ijkl

Since 7(€) = [|¢llog, (ec), by (3.20) we get (42).

V1] +In((InAnaz(§) V1)) < eFaq,(£) +1n(og, (£))-

Example 3.2. Assume that f(s) > 0 for all s € I, and p(du) = e*®1p. (o1 du, where
B¢(0,1) := R2\B(0, 1), and ®(u) is strictly convex on B¢(0, 1), satisfying

(3.22) ®(u) > ||lul|**  for some € > 0 as |Ju| — oo.

Denote by

A(z):= sup {z-u—P(u)}
uweBe(0,1)

the Legendre—Fenchel transform of ®.
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We have
(323) My, (6) ~/
f(s)>F—¢

(for k = 0 the left-hand side expression is just ¥(i£)). The integral on the right-hand
side can be estimated by the multi-dimensional version of the Laplace method (see [14],
expression (4.29)), which leads to the asymptotic behaviour

/ FE(s)uiy oug e G2y ds, k>0,
Be(0,1)

(27) % Fruy, .oy, A(F
3.24 M, i (6) ~ eAMFE) — o0,
(3.21) @)~ | el
where
(3.25) up(§) == arg uer]gl%%,l){g cu— ®(u)}.

Thus, for 1 < k < 4 there exists some polynomial B(£) such that

(3.26) AMFO <My, 4 (6) < B©)eMTO,

1
B(©)
As is the proof of the previous proposition, the same (up to constants) inequalities hold
for the eigenvalues of M. By (3.26)

o < (N (6)
B4(£) — ‘min max ’

and since by (3.22) In A(§) < ||| as ||€|| — oo, we have

max| M (€)]
i () V1) + (e ©) V1)

< 2 B(§) + In (A(FE) + In B(S)) < [i€]l,  [Ig]] — oo
Thus, (A1’) and (A2') are satisfied.

max [Mije (£)] < BN <

3.2. General case: self-similar kernel. In this subsection we consider the general case
when ¢ € T is not fixed, and assume that f(¢,s) satisfies the self-similarity assumption:
s

3.27 t,s) = x(t —
(3.27) st =01 (55
with some functions f : R — R and x,6 : T — (0, +00). Assumption (3.27) is satisfied for
particularly interesting processes like the Lévy process and the fractional Lévy motion.
In these cases we have, respectively,

(3.28) fls) =1pq(s), x(t) =1, 0(t) =1t

), teT, sel,

(3.29) f(s)zm (1= ()] =2 e =1

For the Lévy measure p we assume (2.1) and (1.3) to hold true, as before. In addition
we assume that

0(t) — +oo, In(Inx(t)) V1) <Ind(t), t— +oo,
(3.30) litm inf x(¢) > 0.
In the proof of the theorem below we will use the notation
(331) H(x,z) = H(l,x,z), Mlllk(g) = Miluik(l?g)? )‘2(5) = /\1(1,5)

Put 7(t) := x(¢)0(¢t).
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Theorem 3.2. Suppose that p satisfies assumptions (Al’) and (A2"). In addition, sup-

pose that p and f satisfy one of assumptions (N}) and (F;), i = 1,..,4, respectively. In

the case i = 1 we assume in addition that p satisfies the Cramer’s condition (3.17).
Then

(3.32)

1 0(t) DD/ (1))

)\ @m)"K(z/7(t) t+ |lz]| = oo, (t,z) € [to,00) x R™.

pi(z) ~

Proof. By the self-similarity assumption (3.27) we have

(3.33)

H(t7 Z, Z) = e(t)H (%7 X(t)Z) ) Milnik (tv g) = Xk(t)a(t)MiL-ik (X(t)g)v k>1.
Denote by ((y) the solution to
(3.34) grad¢H (y,i¢) = 0.

The equality (3.33) for H(t,z, z) implies that the equation gradeH (t,z,i£) = 0 can be
rewritten as
T

N0 grad. H i ’ —0,
x8(E)grad; (T(t) C) ¢=x(t)¢
from where we conclude that £(¢, ) satisfies
— ! -
ett.) =x0¢ 75 ).
By the equality for M;; in (3.33) we have

(3.35) Ai(t,€(t, @) = X2(t)9(t))‘i(g(7—t)))’

implying

@(t,x)zﬁ(t)@( z ) det]M(t,g(t,x)):X2(t)9(t)detm(g(i)).

() 7(t)
Thus (3.32) would follow from (2.16) with A = [tg, +00) x R™, provided that conditions
(A1) — (A4) are verified.

By (3.30),
(3.36) t+ €| — oo implies 6(t) = +oo or x(t)|&] — +oc.
Let

B={(t,&):t>to} ={(t,&(t;x)): t > to}-

By the right-hand side relation in (3.33) and (3.35) we get

maxje M ()] maxyjr [Mijr (x()E)]
(3.37) . gk - = 5 .
Ain (t:€) Amaz (6,€) - 00X, (X (H)€)) Amaz (X (£)E)
Hence, (A1) follows from (A1’).
Further, by the right-hand side relation in (3.33) and (3.35)

maxight [Migia (6O _ 20y maXignt [Miga (X(H)E)]
which together with (A2') and (3.36) gives

In ((X_g(t) maXi]}'\kl Pv([;ﬂz)(t’ )|

(3.38)

) v 1) <In @) +x@ONEl, t+]&l] — +o0, (t,€) € B.
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Similarly,

In ((m Ama (t, g)) v 1) —Tn (m (Xz(t)ﬁ(t))\max(x(t)f)) v 1)
=1In (<1n X2 (t) +In6(t) + In )\maw(x(t)f)) Y 1) .

(By the second-line relation in (3.30) we can drop the term (1 V x~!(¢)) in (A2)). By
(A2'), (3.36) and (3.30) we have

I (I Amas (t,6)) V1) < W) +XOIIEl, t+ €] = +oo,  (€) € B.

This completes the proof of (A2).
By (A3"), for every s > 0 there exists () > 0 such that
O(r,Ry) > »lnr, r>0Q.
By the self-similarity assumption (3.27), we have
1
O(t,r,A) =0(t)0 (X(t)r, %/Q .
Denote 0. = inf; 6(t), x« = inf; x(t). Then taking
1446

7 and sz*_lQ,

»

we obtain (A3) from (A3').
Finally, by (A4’) we have

inf (1. [gx (). +00) = 0(0) inf O(x(t)r g, +0))

= 0(t) inf O, [g,+00)) = cd()((x()e)* A1),
r'>x(t)e
implying (A4).
Thus, conditions (A1) — (A4) are satisfied, implying that (3.32) follows from (2.16). O

4. APPLICATION

As an example of an application of Theorem 2.1 we prove the ratio limit theorem for the
distribution density p(z). In [18] the ratio limit theorem is proved in the one-dimensional
case for the invariant distribution density of the Lévy-driven Ornstein-Uhlebeck process
X, and further used in [24] in the proof of the spectral gap property of X. Namely,
in [24] the proof of the existence of the spectral gap consists of two parts: it it shown
that X and the dual process X* satisfy a) the Doeblin condition, b) the Lyapunov type
condition. The ratio limit theorem is essential to show b) for X*; other parts can be
deduced from [22], [23], [25].

Let
(4.1) ra(z) i= PET D)

p(z)
Recall that ((z) denotes the critical point of H(1,z,i&) on R.

, a€R".

Theorem 4.1. Assume that conditions of Theorem 3.1 are satisfied, and

(4.2) Amaz (§) < eAmin(§)  for all € € R™,
for some ¢ > 0, independent of £&. Then
(4.3) Fa(z) ~ ¥ gs |jz| — oo.

For the proof we need the auxiliary lemma.
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Lemma 4.1. Let Ap(x) = (aij(x))} =, be a non-degenerate n x n matriz with C*(R™)
elements. Then

(4.4) IV det An | < ¢, max || Vag ()] max |ag; ()"~
) 2y

Proof. We prove the statement of the Lemma by induction. For n = 1 the statement is
obvious. Suppose that the statement of the Lemma holds true for any non-degenerate
(n — 1) x (n — 1) matrix with smooth elements. Denote by A,_1(j), j = 1,..,n, the
matrices obtained from A, by deleting the first line and j-th row. Then

IV det A ()] < [|[V(D (1) ars det A1 (5)) |

Jj=1

1 Z(—UjH (Vay; - det Ap_1(j) + a1;V det Ap_1(j))||
=1

< n(max ||Va;;(z)| max |a;[" "
ij ij

+ cn—1 max|a;; ()| max | Vag; ()| max ag;| ")
ij ij ij

< ¢, max || Vag; (z) ]| max |ag; ()"~
i ij
([l
Proof of Theorem 4.1. From Theorem 3.1 we have
X
ral) ~ —scu—(i)a)'em”m@, Jall = oo.
We show that
K@)
K(z + a)
and
D(x+a)—D(x)=a-((z)+o0(l) as|z| — .
We have

D(z+a) = D(x) = a-((z) - (z +a) - (((x + a) = ((x)) + Mo({(x + a)) = Mo(¢()).
Observe that ¢ satisfies the equation
(4.5) z = VcMo(C).
Differentiating with respect to x we get
I= V. (VcMo(((2)) = VEMo(¢) Val(x) = M(((2)) Vil ().

Since M is non-degenerate, we have for e, := %

(4.6) M~ (((@))ea = VC(2)eq =: ( (@),
implying
(@) 16 ) < M (@Dl = gy = O el = o
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Therefore by the mean value theorem and (4.5) we have

1
(z +a)- (((z +a) = ((x)) = Mo(¢(2 + a)) = Mo(¢(2)) = (fﬂ+a)/0 VW, sq - 0

—/0 V(MO(C(ZJ))VC(Z/) 'a|y:w+sads

- ||a||(/0 <x+a>-<;<x+sa>ds—/ (2 + sa) - ¢\« + 5a))

0
1
- ||a||2/ (1= 8)ea - C(x + sa)ds.
0
By (4.7) the norm of the right-hand side expression tends to 0 as ||z| — oo, implying
(4.8) D(x +a) —D(x) ~a-((z)+o0(l), |z||— .

Further,
Kg?(l‘)a) _ I ) V(n K (a+sa))-ads.
By (4.2) and Lemma 4.1
maxi;, |Mijr (¢(x))|
min (S (%))
max;jk [Mijk(C(2))]
Arnin (C(@))
€A (@) = 0, ]l = oo,
where in the last line we used (2.28). Thus,
K(z + a)
K(=)
which together with (4.8) implies the statement of the theorem. O

|VInK ()] < e (n) Mz (C@)[VE(@)]|

< c2(n)

—1 as|z| — oo,
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