

Общероссийский математический портал

Т. И. Васильева, А. Г. Коранчук, Конечные группы с субнормальными корадикалами силовских нормализаторов, Cub. матем. эсурн., 2022, том 63, номер 4, 805–813

DOI: 10.33048/smzh.2022.63.407

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 18.222.21.178

20 ноября 2024 г., 02:40:07

КОНЕЧНЫЕ ГРУППЫ С СУБНОРМАЛЬНЫМИ КОРАДИКАЛАМИ СИЛОВСКИХ НОРМАЛИЗАТОРОВ

Т. И. Васильева, А. Г. Коранчук

Аннотация. Доказано, что если $\mathfrak X$ — непустая формация, состоящая из нильпотентных групп, то группа G является расширением нильпотентной группы с помощью $\mathfrak X$ -группы тогда и только тогда, когда в G любой силовский нормализатор разрешим и его $\mathfrak X$ -корадикал субнормален в G. Установлено, что группа G сверхразрешима тогда и только тогда, когда в G любой силовский нормализатор сверхразрешим и его нильпотентный корадикал субнормален в G.

 $DOI\,10.33048/smzh.2022.63.407$

Ключевые слова: конечная группа, силовский нормализатор, субнормальная подгруппа, формация, **З**-корадикал, сверхразрешимая группа.

1. Введение

В работе все рассматриваемые группы конечные. Силовским нормализатором будем называть нормализатор силовской подгруппы группы. Глауберманом в [1] установлено, что если в группе силовские нормализаторы являются примарными группами, то группа примарна. Нильпотентность группы с нильпотентными силовскими нормализаторами доказана в [2]. В [3] показано, что свойство силовских нормализаторов быть φ -дисперсивными с абелевыми силовскими подгруппами (φ — некоторое упорядочение множества всех простых чисел), а также быть вполне факторизуемыми группами соответственно переносится на всю группу. В ряде работ (см., например, [4-7]) рассмотрены насыщенные формации 3, которым принадлежат группы с силовскими нормализаторами из §. Однако к таким формациям не относятся многие классические формации, в частности, формации всех сверхразрешимых групп, всех метанильпотентных групп, всех групп с нильпотентным коммутантом и др. Например, симметрическая группа Sym(4) степени 4 не сверхразрешима, а ее силовские нормализаторы сверхразрешимы, так как силовские 2-подгруппы самонормализуемы, а нормализаторы силовских 3-подгрупп изоморфны симметрической группе Sym(3) степени 3. В [8,9] исследовано строение групп, у которых силовские нормализаторы сверхразрешимы. В частности, в [8] найдены свойства бипримарных групп со сверхразрешимыми силовскими нормализаторами. В [9] получены оценки нильпотентной длины разрешимой группы, все силовские нормализаторы которой сверхразрешимы.

Возникает естественная

Проблема. Установить необходимые и достаточные условия, при которых группа со сверхразрешимыми (метанильпотентными, имеющими нильпотентный коммутант) силовскими нормализаторами сверхразрешима (соответственно метанильпотентна, имеет нильпотентный коммутант).

Настоящая работа посвящена решению данной проблемы.

Нам потребуются следующие обозначения: \mathfrak{A} — класс всех абелевых групп, \mathfrak{N} — класс всех нильпотентных групп, \mathfrak{U} — класс всех сверхразрешимых групп. Для формации \mathfrak{X} через $G^{\mathfrak{X}}$ обозначается \mathfrak{X} -корадикал группы G, т. е. наименьшая нормальная подгруппа группы G, для которой $G/G^{\mathfrak{X}} \in \mathfrak{X}$.

Заметим, что существуют неразрешимые группы с разрешимыми силовскими нормализаторами. Например, в простой группе, изоморфной знакопеременной группе степени 5, нормализаторы силовских 2-, 3- и 5-подгрупп имеют порядки 12, 6 и 10 соответственно и разрешимы.

Теорема А. Пусть \mathfrak{X} — непустая формация такая, что $\mathfrak{X} \subseteq \mathfrak{N}$. Группа G принадлежит \mathfrak{NX} тогда и только тогда, когда $N_G(P)$ разрешим и $(N_G(P))^{\mathfrak{X}}$ субнормален в G для любой силовской подгруппы P из G.

Следствие А.1. Пусть \mathfrak{X} — непустая формация такая, что $\mathfrak{X} \subseteq \mathfrak{N}$, G — разрешимая группа. Группа G принадлежит \mathfrak{NX} тогда и только тогда, когда $(N_G(P))^{\mathfrak{X}}$ субнормален в G для любой силовской подгруппы P из G.

В случаях, когда $\mathfrak{X}=\mathfrak{N}$ и $\mathfrak{X}=\mathfrak{A}$ соответственно, из теоремы А получаются следующие два результата.

Следствие А.2. Группа G метанильпотентна тогда и только тогда, когда в G любой силовский нормализатор разрешим и его нильпотентный корадикал субнормален в G.

Следствие А.3. Группа G имеет нильпотентный коммутант тогда и только тогда, когда в G любой силовский нормализатор разрешим и его коммутант субнормален в G.

Теорема В. Пусть \mathfrak{F} — наследственная насыщенная формация и $\mathfrak{N} \subseteq \mathfrak{F} \subseteq \mathfrak{U}$. Группа G принадлежит \mathfrak{F} тогда и только тогда, когда $N_G(P) \in \mathfrak{F}$ и $(N_G(P))^{\mathfrak{N}}$ субнормален в G для любой силовской подгруппы P группы G.

Так как $(N_G(P))^{\mathfrak{N}} \leq (N_G(P))'$ в любой группе G и в сверхразрешимой группе коммутант нильпотентен, из теоремы B получается

Следствие В.1. Пусть \mathfrak{F} — наследственная насыщенная формация и $\mathfrak{N}\subseteq\mathfrak{F}\subseteq\mathfrak{U}$. Группа G принадлежит \mathfrak{F} тогда и только тогда, когда $N_G(P)\in\mathfrak{F}$ и $(N_G(P))'$ субнормален в G для любой силовской подгруппы P из G.

Для $\mathfrak{F}=\mathfrak{U}$ из теоремы В получаются результаты, дающие ответы к отмеченной выше проблеме.

Следствие В.2. Группа G сверхразрешима тогда и только тогда, когда в G любой силовский нормализатор сверхразрешим и его нильпотентный корадикал субнормален в G.

Следствие В.3. Группа G сверхразрешима тогда и только тогда, когда в G любой силовский нормализатор сверхразрешим и G метанильпотентна.

Следствие В.4. Группа G сверхразрешима тогда и только тогда, когда в G любой силовский нормализатор сверхразрешим и его коммутант субнормален в G.

Следствие В.5. Группа G сверхразрешима тогда и только тогда, когда в G любой силовский нормализатор сверхразрешим и G имеет нильпотентный коммутант.

Напомним [10], что подгруппа группы называется субмодулярной, если ее можно соединить с группой цепью подгрупп, каждая из которых модулярна в следующей. Здесь под модулярной подгруппой понимается подгруппа, которая является модулярным элементом в решетке всех подгрупп группы. Согласно [11] группа называется сильно сверхразрешимой, если она сверхразрешима и любая силовская подгруппа субмодулярна в ней. Класс $s\mathfrak{U}$ всех сильно сверхразрешимых групп является наследственной насыщенной формацией [11], при этом $\mathfrak{N} \subset s\mathfrak{U} \subset \mathfrak{U}$. Положив $\mathfrak{F} = s\mathfrak{U}$, из теоремы В получаем

Следствие В.6. Группа G сильно сверхразрешима тогда и только тогда, когда в G любой силовский нормализатор сильно сверхразрешим и его нильпотентный корадикал субнормален в G.

2. Предварительные сведения

В работе используются обозначения и определения из [12, 13].

Пусть G — группа, p — некоторое простое число. Через |G| обозначается порядок G, $\pi(G)$ — множество всех простых делителей |G|, $O_p(G)$ — наибольшая нормальная p-подгруппа G, $\mathrm{Syl}_p(G)$ — множество всех силовских p-подгрупп G, $\mathrm{Syl}(G)$ — множество всех силовских подгрупп группы G, $\mathrm{Core}_G(M) = \bigcap M^x$ для всех $x \in G$ для любой подгруппы M из G, F(G) — подгруппа Фиттинга из G, G, е. наибольшая нильпотентная нормальная подгруппа G, G0 — подгруппа G1 — единичная подгруппа (группа).

Подгруппа H группы G называется cyбнормальной в G (обозначается через H sn G), если существует цепь подгрупп $H=H_0 \unlhd H_1 \unlhd \cdots \unlhd H_{s-1} \unlhd H_s = G$. Потребуются следующие свойства субнормальных подгрупп (см., например, [12, гл. A.14]), которые соберем в одной лемме.

Лемма 1. Пусть K — подгруппа группы G, Hsn G. Тогда справедливы следующие утверждения.

- (1) $H \cap K$ sn K, в частности, если $H \leq K$, то H sn K.
- (2) Если K sn H, то K sn G.
- (3) Если K sn G, то $H \cap K$ sn G и $\langle H, K \rangle$ sn G.
- (4) Если $K \subseteq G$, то HK/K sn G/K.
- (5) Если K sn G, то $Soc(G) \leq N_G(K)$.

Отметим, что если K sn G и K нильпотентна, то $K \leq F(G)$ [12, теорема A.8.8(a)].

Лемма 2 [12, теорема A.6.4(a)]. Если N — нормальная подгруппа группы G и $P \in \mathrm{Syl}_p(G)$, то $P \cap N \in \mathrm{Syl}_p(N)$ и $PN/N \in \mathrm{Syl}_p(G/N)$, более того, $N_{G/N}(PN/N) = N_G(P)N/N$.

При доказательстве в [2] следующего результата была использована классификация простых групп.

Лемма 3 [2, теорема 2]. Пусть G — группа такая, что $N_G(P)$ нильпотентен для любой силовской p-подгруппы из G. Тогда G нильпотентна.

Лемма 4 [13, предложение 2.2.8]. Пусть \mathfrak{F} — непустая формация и N — нормальная подгруппа группы G. Тогда справедливы следующие утверждения:

- (1) $(G/N)^{\mathfrak{F}} = G^{\mathfrak{F}}N/N$;
- (2) если U подгруппа из G и G = UN, то $U^{\mathfrak{F}}N = G^{\mathfrak{F}}N$;
- (3) если N нильпотентная подгруппа и G = UN, то $U^{\mathfrak{F}} \leq G^{\mathfrak{F}}$.

Лемма 5 [12, теорема IV.1.16]. Любая формация, состоящая из нильпотентных групп, является наследственной формацией.

Лемма 6. Пусть \mathfrak{F} — непустая формация, N — нормальная подгруппа группы G. Если $(N_G(P))^{\mathfrak{F}}$ sn G для любой силовской подгруппы P из G, то $(N_{G/N}(P_1/N))^{\mathfrak{F}}$ sn G/N для любой силовской подгруппы P_1/N из G/N.

ДОКАЗАТЕЛЬСТВО. Пусть P_1/N — силовская p-подгруппа из G/N. Тогда $P_1/N=PN/N$ для некоторой силовской p-подгруппы P из G. По лемме 2 $N_{G/N}(P_1/N)=N_G(P)N/N$. По лемме 4 имеем

$$(N_{G/N}(P_1/N))^{\mathfrak{F}} = (N_G(P)N/N)^{\mathfrak{F}} = (N_G(P))^{\mathfrak{F}}N/N.$$

Из $(N_G(P))^{\mathfrak{F}}$ sn G по лемме 1 заключаем, что $(N_{G/N}(P_1/N))^{\mathfrak{F}}$ sn G/N. Лемма доказана.

Лемма 7. Если \mathfrak{F} — непустая наследственная формация и R — подгруппа группы G, то $R^{\mathfrak{F}} \leq G^{\mathfrak{F}}$.

Доказательство. Утверждение следует из того, что $RG^{\mathfrak{F}}/G^{\mathfrak{F}} \leq G/G^{\mathfrak{F}} \in \mathfrak{F}$ и $R/R \cap G^{\mathfrak{F}} \cong RG^{\mathfrak{F}}/G^{\mathfrak{F}} \in \mathfrak{F}$.

3. Доказательства основных результатов

Доказательство теоремы А. Отметим, что по [12, определения II.1.3, 1.7.IV, теорема IV.1.8] $\mathfrak{NX} = (G \mid G/N \in \mathfrak{X}$ для некоторой $N \leq G$ и $N \in \mathfrak{N}) = \mathfrak{N} \circ \mathfrak{X} = (G \mid G^{\mathfrak{X}} \in \mathfrak{N})$ является формацией. Согласно [12, пример IV.3.4(b), теорема IV.4.6] \mathfrak{NX} насыщенна.

Пусть $G \in \mathfrak{NX}$. Рассмотрим любую силовскую p-подгруппу P из G. Так как \mathfrak{NX} состоит из разрешимых групп, $N_G(P)$ разрешим. По лемме 5 \mathfrak{X} является наследственной формацией. Тогда по лемме 7 $(N_G(P))^{\mathfrak{X}} \leq G^{\mathfrak{X}}$. Ввиду нильпотентности $G^{\mathfrak{X}}$ получаем цепь подгрупп $(N_G(P))^{\mathfrak{X}}$ sn $G^{\mathfrak{X}} \trianglelefteq G$.

Обратно, допустим, что утверждение неверно. Пусть G — группа наименьшего порядка такая, что $N_G(P)$ разрешим, $(N_G(P))^{\mathfrak{X}}$ sn G для любой силовской подгруппы P из G, а $G \notin \mathfrak{NX}$.

1. Допустим, что N=G для некоторой минимальной нормальной подгруппы N из G. Тогда G — простая группа. Если $N_G(P)=G$ для некоторой силовской p-подгруппы P из G, то $P\unlhd G$ и ввиду простоты G имеем |G|=p. Но тогда $G\in\mathfrak{N}\subseteq\mathfrak{NX},$ что противоречит выбору G.

Предположим, что $N_G(P) \neq G$ для любой силовской p-подгруппы P из G. Из субнормальности $(N_G(P))^{\mathfrak{X}}$ в G следует, что $(N_G(P))^{\mathfrak{X}}=1$. Тогда $N_G(P)\in \mathfrak{X}\subseteq \mathfrak{N}$. По лемме 3 группа G нильпотентна, т. е. $G\in \mathfrak{NX}$, что противоречит выбору G.

2. Допустим, что $N \neq G$ для любой минимальной нормальной подгруппы N из G. Если P_1/N — силовская p-подгруппа из G/N, то в G найдется силовская p-подгруппа P такая, что $P_1/N = PN/N$. Из разрешимости $N_G(P)$ следует разрешимость $N_{G/N}(P_1/N) = N_G(P)N/N \cong N_G(P)/N_G(P) \cap N$. Ввиду леммы 6 для G/N все условия теоремы выполнены, поэтому $G/N \in \mathfrak{NX}$ по выбору G.

Если в G имеется минимальная нормальная подгруппа $K \neq N$, то по доказанному выше $G/K \in \mathfrak{NX}$. Так как \mathfrak{NX} — формация, имеем $G/N \cap K \cong G \in \mathfrak{NX}$. Это противоречит выбору G.

Значит, N — единственная минимальная нормальная подгруппа из G.

Если $\Phi(G) \neq 1$, то $N \leq \Phi(G)$. Тогда $G/\Phi(G) \cong G/N/\Phi(G)/N \in \mathfrak{NX}$ и из насыщенности \mathfrak{NX} следует противоречие $G \in \mathfrak{NX}$.

Таким образом, $\Phi(G)=1$ и существует максимальная в G подгруппа M такая, что G=NM. Так как $G/N\in\mathfrak{NX}$ и $G\notin\mathfrak{NX}$, имеем $N=G^{\mathfrak{NX}}$.

Рассмотрим два случая.

- I. N абелева группа. Тогда N p-группа для некоторого простого p. Из разрешимости G/N и N следует разрешимость G. Так как $\mathrm{Core}_G(M)=1$, по [12, теорема A.15.6] $N=C_G(N)=F(G),\ M\cap N=1$ и $O_p(M)=1$. Из $G\notin\mathfrak{N}$ следует, что $|\pi(G)|\geq 2$.
- $I(a). \ |\pi(G)| = 2. \ \Pi$ усть $\pi(G) = \{p,q\}$. Если $p \in \pi(F(M))$, то силовская p-подгруппа из F(M) нормальна в M, поэтому содержится в $O_p(M) = 1$. Это означает, что $p \notin \pi(F(M))$, т. е. F(M) q-группа. Из $M \cong G/N \in \mathfrak{N}\mathfrak{X}$ следует, что $M^{\mathfrak{X}} \in \mathfrak{N}$, причем $M^{\mathfrak{X}} \neq 1$ по выбору G. Так как $M^{\mathfrak{X}} \leq F(M)$, то $M/F(M) \cong M/M^{\mathfrak{X}}/F(M)/M^{\mathfrak{X}} \in \mathfrak{X} \subseteq \mathfrak{N}$. Отсюда заключаем, что силовская q-подгруппа S из M нормальна в M. Значит, $M \leq N_G(S)$. Из максимальности M в G и $\mathrm{Core}_G(M) = 1$ заключаем, что $N_G(S) = M$. Тогда $(N_G(S))^{\mathfrak{X}} = M^{\mathfrak{X}} q$ -группа. Так как $S \in \mathrm{Syl}_q(G)$, то $(N_G(S))^{\mathfrak{X}}$ sn G по выбору G. Значит, $M^{\mathfrak{X}} \leq F(G) = N$ и $M^{\mathfrak{X}} \leq M \cap N = 1$. Получили противоречие с $M^{\mathfrak{X}} \neq 1$.
- $I(b). \ |\pi(G)| \geq 3. \ \Pi$ усть $\pi(G) = \{p_1, p_2, \dots, p_n\}$ и $p_1 = p$. По теореме Холла $G = G_1G_2\dots G_n$, где G_1, G_2, \dots, G_n попарно перестановочные силовские p_1 -, p_2 -, ..., p_n -подгруппы соответственно. Положим $B_i = G_1G_i, \ i = 2, \dots, n$. Возьмем любую силовскую подгруппу B из B_i . Из теоремы Силова следует, что $B \in \mathrm{Syl}(G)$ и $(N_G(B))^{\mathfrak{X}}$ sn G по выбору G. По лемме $1 \ (N_G(B))^{\mathfrak{X}} \cap B_i$ sn B_i . Из наследственности \mathfrak{X} по лемме $7 \ (N_{B_i}(B)^{\mathfrak{X}} = (N_G(B) \cap B_i)^{\mathfrak{X}} \leq (N_G(B))^{\mathfrak{X}}$. Тогда $(N_{B_i}(B))^{\mathfrak{X}} \leq (N_G(B))^{\mathfrak{X}} \cap B_i$ sn B_i . Итак, $(N_{B_i}(B))^{\mathfrak{X}}$ sn B_i . Поскольку G разрешима, $N_{B_i}(B)$ разрешим. Значит, для B_i условия теоремы выполнены и $B_i \in \mathfrak{NX}$ по выбору G. Таким образом, $B_i^{\mathfrak{X}} \in \mathfrak{N}$ и по теореме 8.8.А из [10] $B_i^{\mathfrak{X}} \leq F(B_i)$. Так как $N \leq G_1 \leq B_i$, то $N \leq F(B_i)$.

Если $p_i \in \pi(F(B_i))$, то в $F(B_i)$ существует силовская p_i -подгруппа T_i и $T_i \leq B_i$. Но тогда $T_i \leq C_{B_i}(N) \leq C_G(N) = N$; противоречие с $p_i \neq p_1$. Итак, $p_i \notin \pi(F(B_i))$ и $F(B_i) - p_1$ -группа. По теореме Силова $F(B_i) \leq G_1$. Из $B_i/F(B_i) \cong B_i/B_i^{\mathfrak{X}}/F(B_i)/B_i^{\mathfrak{X}} \in \mathfrak{X} \subseteq \mathfrak{N}$ следует, что $G_1/F(B_i) \leq B_i/F(B_i)$. Значит, $G_1 \leq B_i$.

Итак, $G_i \leq B_i \leq N_G(G_1)$ и $G = G_1G_2\dots G_n \leq N_G(G_1)$, т. е. $G_1 \leq G$. Из $G_1 = N(G_1\cap M),\ G_1\cap M \leq M$ и $O_p(M) = 1$ следует, что $N = G_1 \in \mathrm{Syl}_{p_1}(G)$. Значит, M — холлова p_1' -подгруппа в G.

Пусть L — силовская r-подгруппа из M, тогда $r \neq p_1 = p$.

Если $L \subseteq M$, то $M \le N_G(L)$ и из $\mathrm{Core}_G(M) = 1$ следует, что $M = N_G(L)$. Так как $L \in \mathrm{Syl}_r(G)$, то $M^{\mathfrak{X}} = (N_G(L))^{\mathfrak{X}}$ sn G. Из $G/N \cong M \in \mathfrak{NX}$ следует, что $M^{\mathfrak{X}} \in \mathfrak{N}$. Тогда $M^{\mathfrak{X}} \le F(G) = N$. Значит, $M^{\mathfrak{X}} = 1$ и $M \in \mathfrak{X}$. Получили противоречие с $G \notin \mathfrak{NX}$.

Предположим, что $L \not \trianglelefteq M$. Тогда $N_M(L) \neq M$. Покажем, что $N_G(L) \in \mathfrak{NX}$. Рассмотрим $D = N_G(L) \cap N$.

Если D=1, то из $N_G(L)N/N\leq G/N\in\mathfrak{NX}$ следует, что $(N_G(L)N/N)^{\mathfrak{X}}\leq (G/N)^{\mathfrak{X}}\in\mathfrak{N}$. Тогда $(N_G(L))^{\mathfrak{X}}\cong (N_G(L))^{\mathfrak{X}}N/N=(N_G(L)N/N)^{\mathfrak{X}}\in\mathfrak{N}$ и $N_G(L)\in$

MX.

Пусть $D \neq 1$. По лемме $2 D \in \operatorname{Syl}_p(N_G(L))$, причем $D \subseteq N_G(L)$. Положим $\pi = \{p,r\}$. Так как $DL \subseteq N_G(L)$, в $N_G(L)$ существует холлова π' -подгруппа A такая, что $N_G(L) = (D \times L)A$. Подгруппа DA является r'-подгруппой. Поэтому в G найдется холлова r'-подгруппа H такая, что $DA \subseteq H$. Обозначим через H_1 силовскую q-подгруппу из H. Тогда $H_1 \in \operatorname{Syl}_q(G)$ и $(N_G(H_1))^{\mathfrak{X}}$ sn G. Так как $(N_H(H_1))^{\mathfrak{X}} \leq N_G(H_1)^{\mathfrak{X}} \cap H \leq N_G(H_1) \cap H$, имеем $N_H(H_1)^{\mathfrak{X}} \subseteq N_G(H_1)^{\mathfrak{X}} \cap H$ sn H. Из разрешимости G следует разрешимость $N_H(H_1)$. Итак, для H все условия теоремы выполняются. Из |H| < |G| следует, что $H \in \mathfrak{NX}$. Тогда из $(DA)^{\mathfrak{X}} \leq H^{\mathfrak{X}} \in \mathfrak{N}$ заключаем, что $DA \in \mathfrak{NX}$. Отсюда $DA \cong N_G(L)/L \in \mathfrak{NX}$. Заметим, что LA = p'-группа. Поэтому существует $g \in G$ такой, что $LA \leq M^g \in \mathfrak{NX}$. Из $(LA)^{\mathfrak{X}} \leq (M^g)^{\mathfrak{X}} \in \mathfrak{N}$ получаем, что $LA \in \mathfrak{NX}$ и $N_G(L)/D \cong LA \in \mathfrak{NX}$. Так как $\mathfrak{NX} = \Phi$ ормация, имеем $N_G(L)/L \cap D \cong N_G(L) \in \mathfrak{NX}$.

Итак, $N_G(L) \in \mathfrak{NX}$. Поэтому $(N_G(L))^{\mathfrak{X}} \in \mathfrak{N}$. Тогда $(N_G(L))^{\mathfrak{X}} \leq F(G) = N$. Из наследственности \mathfrak{X} по лемме 7 следует, что $(N_M(L))^{\mathfrak{X}} \leq (N_G(L))^{\mathfrak{X}}$. Откуда заключаем, что $(N_M(L))^{\mathfrak{X}} \leq M \cap N = 1$. Тогда $N_M(L) \in \mathfrak{X} \subseteq \mathfrak{N}$. По лемме $3 M \in \mathfrak{N}$. Получим противоречие с $L \not \preceq M$. Мы доказали, что случай I невозможен.

II. N — неабелева группа. Тогда F(G)=1 и $C_G(N)=1$. Пусть $Q\in \mathrm{Syl}_q(G)$. Если $N_G(Q)=G$, то $Q\unlhd G$ и $N\le Q$, так как N — единственная минимальная нормальная подгруппа в G. Получили противоречие с тем, что N неабелева.

Предположим, что $N_G(Q) \neq G$ для любой $Q \in \operatorname{Syl}_q(G)$.

Если $(N_G(Q))^{\mathfrak{X}}=1$, то $(N_G(Q))\in \mathfrak{X}\subseteq \mathfrak{N}$. По лемме $3\ G\in \mathfrak{N}\subseteq \mathfrak{NX}$. Получили противоречие.

Допустим, что $(N_G(Q))^{\mathfrak{X}} \neq 1$. Обозначим $T = (N_G(Q))^{\mathfrak{X}}$ и B = TN. Из разрешимости $N_G(Q)$ следует разрешимость $T \cap N$. По лемме 1 из T sn G получаем, что $T \cap N$ sn N. По [12, предложение A.4.13(a)] $N = N_1 \times \cdots \times N_t$, где N_1, \ldots, N_t — изоморфные простые группы. Ввиду [12, предложение A.4.13(b)] $T \cap N = N_{i_1} \times \cdots \times N_{i_k}$, где $\{N_{i_1}, \ldots, N_{i_k}\} \subseteq \{N_1, \ldots, N_t\}$. Так как N_i неабелева, $i = 1, \ldots, t$, заключаем, что $T \cap N = 1$. Ввиду T sn B по лемме 1 имеем $\mathrm{Soc}(B) \leq N_B(T)$. По [12, лемма A.4.14] $N \leq \mathrm{Soc}(B)$. Итак, $N \times T \leq N_B(T)$. Поэтому $T \leq C_B(N) \leq C_G(N) = 1$. Получили противоречие с $T = (N_G(Q))^{\mathfrak{X}} \neq 1$. Теорема полностью доказана.

Доказательство теоремы В. Пусть $G \in \mathfrak{F}$. Из наследственности \mathfrak{F} следует, что $N_G(P) \in \mathfrak{F}$ для любой силовской подгруппы P из G. Так как $G/G' \in \mathfrak{A} \subseteq \mathfrak{N}$ и $\mathfrak{F} \subseteq \mathfrak{U}$, имеем $G^\mathfrak{N} \leq G' \in \mathfrak{N}$. Тогда $(N_G(P))^\mathfrak{N}$ sn $G^\mathfrak{N} \leq G$.

Обратно, предположим, что утверждение неверно. Пусть G — группа наименьшего порядка такая, что $N_G(P) \in \mathfrak{F}, \ (N_G(P))^{\mathfrak{N}}$ sn G для любой силовской подгруппы P из G, а $G \notin \mathfrak{F}$. По следствию A.2 группа G метанильпотентна, а значит, разрешима. Так как $\mathfrak{N} \subseteq \mathfrak{F}$, то |G| не является простым числом.

Пусть N — минимальная нормальная подгруппа из G. Тогда $N \neq G$. Из разрешимости G следует, что N — p-группа для некоторого простого p. Поскольку в G/N любая силовская q-подгруппа имеет вид QN/N для некоторой $Q \in \operatorname{Syl}_q(G)$ и $N_G(Q) \in \mathfrak{F}$, имеем $N_{G/N}(QN/N) = N_G(Q)N/N \cong N_G(Q)/N_G(Q) \cap N \in \mathfrak{F}$. Ввиду леммы 6 для G/N все условия теоремы выполнены. По выбору G получаем, что $G/N \in \mathfrak{F}$.

Из насыщенности формации $\mathfrak F$ следует, что N — единственная минимальная нормальная подгруппа из G и $\Phi(G)=1$. Тогда G=NM для некоторой

максимальной в G подгруппы M. Так как G разрешима и $\mathrm{Core}_G(M)=1$, по [12, теорема A.15.6] $N=C_G(N)=F(G),\ M\cap N=1$ и $O_p(M)=1$. Ввиду нильпотентности $G^{\mathfrak{N}}$ имеем $G^{\mathfrak{N}}\leq F(G)$. Если $G^{\mathfrak{N}}=1$, то $G\in \mathfrak{N}\subseteq \mathfrak{F}$. Это противоречит выбору G. Значит, $G^{\mathfrak{N}}=N$. Тогда $G/N\cong M\in \mathfrak{N}$. Если $p\in \pi(M)$, то в M силовская p-подгруппа M_1 нормальна, поэтому $1\neq M_1\leq O_p(M)=1$. Это противоречие показывает, что $p\notin \pi(M)$. Тогда $N\in \mathrm{Syl}_p(G)$ и $G=N_G(N)\in \mathfrak{F}$. Полученное противоречие с выбором G завершает доказательство теоремы.

4. Заключительные замечания

Отметим, что в теореме A нельзя отбросить условие нильпотентности групп из \mathfrak{X} . Например, если $\mathfrak{X} = \text{form}(\mathfrak{N}, \text{Sym}(3))$, то в группе $G \cong \text{Sym}(4)$ все силовские нормализаторы $N_G(P)$ принадлежат \mathfrak{X} и $N_G(P)^{\mathfrak{X}} = 1$ sn G для любой $P \in \text{Syl}(G)$, а $G \notin \mathfrak{X}$.

Напомним [14], что подгруппа H группы G называется \mathbb{P} -субнормальной в G, если либо H=G, либо существует цепь подгрупп $H=H_0 < H_1 < \cdots < H_{n-1} < H_n = G$ такая, что $|H_i:H_{i-1}|$ — простое число для любого $i=1,\ldots,n$, обозначается через H \mathbb{P} -sn G.

Ясно, что в разрешимой группе любая субнормальная подгруппа Р-субнормальна, обратное в общем случае неверно.

В [15] было доказано, что если в группе силовские нормализаторы \mathbb{P} -субнормальны, то группа сверхразрешима. В [16] исследовались группы с формационно субнормальными силовскими нормализаторами.

Нам потребуются некоторые свойства Р-субнормальных подгрупп из [14].

Лемма 8. Пусть G — разрешимая группа и H — ее подгруппа. Тогда справедливы следующие утверждения.

- (1) Если H \mathbb{P} -sn G, то $H\cap K$ \mathbb{P} -sn K для любой подгруппы K из G.
- (2) Если H \mathbb{P} -sn G и K \mathbb{P} -sn G, то $H \cap K$ \mathbb{P} -sn G.
- (3) Если H \mathbb{P} -sn G, то H^x \mathbb{P} -sn G для любого $x \in G$.
- (4) Если H \mathbb{P} -sn G и $N \subseteq G$, то HN/N \mathbb{P} -sn G/N.
- (5) Если $N \subseteq G$ и HN/N \mathbb{P} -sn G/N, то HN \mathbb{P} -sn G.
- (6) Если K \mathbb{P} -sn H \mathbb{P} -sn G, то K \mathbb{P} -sn G.

Предложение 1. Пусть \mathfrak{F} — наследственная насыщенная формация, $\mathfrak{N} \subseteq \mathfrak{F} \subseteq \mathfrak{U}$. Группа G принадлежит \mathfrak{F} тогда и только тогда, когда G разрешима, $N_G(P) \in \mathfrak{F}$ и $(N_G(P))^{\mathfrak{N}}$ \mathbb{P} -субнормален в G для любой силовской подгруппы P группы G.

Доказательство. Пусть $G \in \mathfrak{F}$. Тогда G разрешима и $N_G(P) \in \mathfrak{F}$ для любой силовской подгруппы P из G ввиду наследственности \mathfrak{F} . Так как $\mathfrak{F} \subseteq \mathfrak{U}$, из теоремы Хупперта [12, теорема VII.2.2(c)] следует, что любую собственную подгруппу, а значит, и $(N_G(P))^{\mathfrak{N}}$ можно соединить с G цепью подгрупп с простыми индексами

Обратно, предположим, что утверждение неверно. Пусть G — группа наименьшего порядка такая, что G разрешима, $N_G(P) \in \mathfrak{F}, \ (N_G(P))^{\mathfrak{N}}$ \mathbb{P} - $sn\ G$ для любой силовской подгруппы P из G, а $G \notin \mathfrak{F}$.

Пусть N — минимальная нормальная подгруппа из G. Так как $\mathfrak{N}\subseteq\mathfrak{F}$, то $N\neq G$. Если $Q_1/N\in \mathrm{Syl}_q(G/N)$, то $Q_1/N=QN/N$ для некоторой $Q\in \mathrm{Syl}_q(G)$. Тогда $N_G(Q)\in\mathfrak{F}$ и $N_{G/N}(Q_1/N)=N_G(Q)N/N\cong N_G(Q)/N_G(Q)\cap N\in\mathfrak{F}$. Из $(N_G(Q))^{\mathfrak{N}}$ \mathbb{P} -sn G по леммам 4 и 8 имеем $(N_{G/N}(Q_1/N))^{\mathfrak{N}}=(N_G(Q))^{\mathfrak{N}}N/N$ \mathbb{P} -sn G/N. Для G/N все условия теоремы выполнены, поэтому $G/N\in\mathfrak{F}$.

Так как \mathfrak{F} — насыщенная формация, N — единственная минимальная нормальная подгруппа в G и $\Phi(G)=1$. Ввиду разрешимости G имеем $|N|=p^m$ для некоторого простого p, кроме того, G=NM, где M — некоторая максимальная в G подгруппа, $M\cap N=1$. Из $\mathrm{Core}_G(M)=1$ следует, что $N=C_G(N)=F(G)$ и $O_p(M)=1$.

Так как $G \notin \mathfrak{F}$, то $p \in \pi(M)$. Пусть r — наибольший простой делитель |M| и R — силовская r-подгруппа из M. Из $M \cong G/N \in \mathfrak{F} \subseteq \mathfrak{U}$ по [12, теорема VII.2.2] вытекает, что R нормальна в M. Из $O_p(M)=1$ заключаем, что r>p. Поэтому $M=N_G(R)$. Так как $R\in \mathrm{Syl}_r(G)$, то $M^{\mathfrak{N}}$ \mathbb{P} -sn G. Заметим, что $1\neq M^{\mathfrak{N}}\neq M$. Из сверхразрешимости M и $M/M'\in \mathfrak{A}\subseteq \mathfrak{N}$ следует, что $M^{\mathfrak{N}}\leq M'\in \mathfrak{N}$. Поэтому $p\notin \pi(M^{\mathfrak{N}})$.

Предположим, что $|\pi(M)|=2$. Тогда $M^{\mathfrak{N}}-r$ -группа. Рассмотрим $H=NM^{\mathfrak{N}}$. По лемме 8(1) $M^{\mathfrak{N}}=H\cap M^{\mathfrak{N}}$ \mathbb{P} -sn H. Тогда найдется цепь подгрупп $M^{\mathfrak{N}}=M_0 < M_1 < \cdots < M_{n-1} < M_n = H$ такая, что $|M_i:M_{i-1}|$ — простое число для любого $i=1,\ldots,n$. Из $M^{\mathfrak{N}}\in \mathrm{Syl}_r(H)$ следует, что $|M_i:M_{i-1}|=p$. Ввиду $|M_1:N_{M_1}(M_0)|\equiv 1 \pmod{r}$ и r>p заключаем, что $M_1=N_{M_1}(M_0)$, т. е. $M_0 \unlhd M_1$. Аналогично показываем, что $M_0 \unlhd M_2,\ldots,M_0 \unlhd M_n$. Таким образом, $M^{\mathfrak{N}} \unlhd H$. Но тогда $M^{\mathfrak{N}} \le C_H(N) \le C_G(N)=N$. Получили противоречие: $1 \ne M^{\mathfrak{N}} \le M \cap N=1$.

Допустим, что $|\pi(M)| > 2$. Пусть $P \in \operatorname{Syl}_p(G)$. Тогда $P = N(P \cap M)$ и $PR = N(P \cap M)R$ — подгруппа группы G. Положим K = PR. Пусть S — любая силовская подгруппа из K. Так как $S \in \operatorname{Syl}(G)$, то $N_G(S) \in \mathfrak{F}$ и $(N_G(S))^{\mathfrak{N}}$ \mathbb{P} -sn G. Из наследственности \mathfrak{F} следует, что $N_K(S) \in \mathfrak{F}$. По лемме $8(1) \ (N_G(S))^{\mathfrak{N}} \cap K$ \mathbb{P} -sn K. Поскольку $(N_G(S))^{\mathfrak{N}} \trianglelefteq (N_G(S))^{\mathfrak{N}} \cap K$ — разрешимая группа, существует композиционный ряд с простыми индексами, проходящий через $(N_G(S))^{\mathfrak{N}}$ до $(N_G(S))^{\mathfrak{N}} \cap K$. Это означает, что $(N_G(S))^{\mathfrak{N}}$ \mathbb{P} -sn $(N_G(S))^{\mathfrak{N}} \cap K$. По лемме $8(6) \ (N_G(S))^{\mathfrak{N}}$ \mathbb{P} -sn K. Так как |K| < |G|, то $K \in \mathfrak{F}$. Но тогда K сверхразрешима и $K \subseteq K$. Поэтому $K \subseteq K$ 0 $K \subseteq K$ 1. Получили противоречие: $K \subseteq K$ 2. Поредложение доказано.

Следствие 1. Группа G сверхразрешима тогда и только тогда, когда G разрешима, в G любой силовский нормализатор сверхразрешим и его нильпотентный корадикал \mathbb{P} -субнормален в G.

Вопрос. Можно ли в теореме А и в предложении 1 убрать условие разрешимости?

ЛИТЕРАТУРА

- 1. Glauberman G. Global and local properties of finite groups // Finite simple groups. London; New York: Acad. Press, 1971. P. 1–64.
- Bianchi M., Gillio Berta Mauri A., Hauck P. On finite soluble groups with nilpotent Sylow normalizers // Arch. Math. 1986. V. 47, N 3. P. 193–197.
- **3.** *Монахов В. С.*, *Селькин М. В.* Нормальные подгруппы конечных групп и формации с нормализаторными условиями // Мат. заметки. 1999. Т. 66, \mathbb{N}^2 6. С. 867–870.
- Баллестер-Болинше А., Шеметков Л. А. О нормализаторах силовских подгрупп в конечных группах // Сиб. мат. журн. 1999. Т. 40, № 1. С. 3–5.
- D'Aniello A., De Vivo C., Giordano G. Saturated formations and Sylow normalizers // Bull. Austral. Math. Soc. 2004. V. 69, N 1. P. 25–33.
- D'Aniello A., De Vivo C., Giordano G., Pérez-Ramos M. D. Saturated formations closed under Sylow normalizers // Commun. Algebra. 2005. V. 33, N 8. P. 2801–2808.
- Kazarin L., Martínez-Pastor A., Pérez-Ramos M. D. On Sylow normalizers of finite groups // J. Algebra Appl. 2014. V. 13, N 3. P. 1350116-1-20.

- 8. Fedri V., Serena L. Finite soluble groups with supersoluble Sylow normalizers // Arch. Math. 1988. V. 50, N 1. P. 11–18.
- 9. Bryce R. A., Fedri V., Serena L. Bounds on the Fitting length of finite soluble groups with supersoluble Sylow normalizers // Bull. Austral. Math. Soc. 1991. V. 44, N 1. P. 19–31.
- 10. Zimmermann I. Submodular subgroups in finite groups // Math. Z. 1989. V. 202, N 4. P. 545–557.
- **11.** Васильев В. А. Конечные группы с субмодулярными силовскими подгруппами // Сиб. мат. журн. 2015. Т. 56, № 6. С. 1277–1288.
- ${\bf 12.}\;$ Doerk K., Hawkes T. Finite soluble groups. Berlin; New York: Walter De Gruyter, 1992. V. 4.
- Ballester-Bolinches A., Ezquerro L. M. Classes of finite groups. Dordrecht: Springer-Verl., 2006. V. 584.
- **14.** Васильев А. Ф., Васильева Т. И., Тютянов В. Н. О конечных группах сверхразрешимого типа // Сиб. мат. журн. 2010. Т. 51, № 6. С. 1270–1281.
- 15. Kniahina V. N., Monakhov V. S. On supersolvability of finite groups with \mathbb{P} -subnormal subgroups // Intern. J. Group Theory. 2013. V. 2, N 4. P. 21–29.
- **16.** Васильев А. Ф. Васильева Т. И., Коранчук А. Г. О конечных группах с формационно субнормальными нормализаторами силовских подгрупп // Мат. заметки. 2020. Т. 108, № 5. С. 679–691.

Поступила в редакцию 17 декабря 2021 г. После доработки 9 февраля 2022 г. Принята к публикации 10 февраля 2022 г.

Васильева Татьяна Ивановна (ORCID 0000-0002-1404-3314) Белорусский государственный университет транспорта, кафедра высшей математики, ул. Кирова, 34, Гомель 246653, Беларусь tivasilyeva@mail.ru

Коранчук Анастасия Геннадьевна Гомельский государственный университет им. Ф. Скорины, кафедра алгебры и геометрии, ул. Советская, 104, Гомель 246019, Беларусь melchenkonastya@mail.ru