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ON THE RATE OF DECAY OF A STRONG SOLUTION
OF THE FIRST MIXED PROBLEM

FOR THE SYSTEM OF NAVIER-STOKES EQUATIONS
IN DOMAINS WITH NONCOMPACT BOUNDARIES
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F. KH. MUKMINOV

ABSTRACT. This article contains an investigation of the behavior as t —* oo of a
solution of the mixed problem with Dirichlet conditions on the boundary for the
system of Navier-Stokes equations in an unbounded three-dimensional domain. An
estimate, determined by the geometry of the domain, is proved for the rate of decay
of a solution for a compactly supported initial function satisfying a certain smallness
condition. This estimate coincides in form with the sharp estimate obtained earlier
by the author for the solution of the first mixed problem for the heat equation.

Bibliography: 35 titles.

1. INTRODUCTION

In the domain D = (0, oo) χ Ω, where Ω is an unbounded domain in Rn , n> 2,
we consider the problem

(1) u, + u · Vu = νΔιι - Vp, dry* u = 0 in D;

(2)

Here for η = 3, u(i, x) = {u\, U2, Μ3) and p(t, x) are the unknown velocities of
flow of a fluid and the pressure, and φ = {ψ\, φι, φ^) are the given initial velocities.
In the sequel, instead of

we simply write div u. The expression

denotes the derivative of / along the vector u.
The existence of a weak solution of the Cauchy problem (1), (2) with η = 3 was

proved by Leray [21], and for an arbitrary three-dimensional domain by Hopf [11].
The existence of a weak solution for η > 3 was proved, for example, in [24]. The
uniqueness and regularity of a weak solution are both still open questions.

The existence of a strong solution of the problem (1), (2) in the domain D was
proved by Kiselev and Ladyzhenskaya [ 16] under a certain smallness condition on the

ο

initial function φ € \ν^(Ω). In the same paper the uniqueness of a strong solution
was proved. There the domain Ω was assumed to be bounded, while in [33] Serrin
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508 F. KH. MUKMINOV

extended these results to the case of an unbounded domain. Strong solutions were
constructed under other assumptions about the smallness of the initial function in
[13] and [15].

The following question was posed as far back as 1934 by Leray [21]: does the
kinetic energy

Uu2(t,x)dx
1 Ja

(the L2-norm) of a fluid flow in an unbounded domain tend to zero as i-> oo? A
positive answer was given in the case of the Cauchy problem by Kato [15] (for a
strong solution) and Masuda [24] (for a weak solution). Moreover, the following
estimate was obtained in [15]. If a solenoidal vector φ belongs to the intersection
Ln(Rn)r\Lr(R"), r e [1, η], and the norm \\φ\\η is sufficiently small, then there exists
a unique strong solution of the Cauchy problem (1), (2), and ||u(i)||Q = O(t~y), γ =
(n/r - n/a)/2, for a> r as t —> oo. Here and below,

\M\a,Q=
" r

ttJQ
and the corresponding indices will be omitted for a = 2 and Q — Ω. In [1] certain
estimates were obtained for a strong solution of the nonhomogeneous system of
Navier-Stokes equations; in the homogeneous case these estimates are a consequence
of the cited estimate.

An estimate of the rate of decrease of the kinetic energy for a weak solution of
the Cauchy problem (1), (2) was given in [31] and improved in [14] and [35]. We
formulate the result in [14]. If a solenoidal vector φ belongs to L2(i?")nLr(i?'1), η >
2, r G [1, 2), then there exists a weak solution of the Cauchy problem (1), (2) that
decays just as in the case of the heat equation: ||u(i)|| = 0{t~y), γ = (n/r - n/2)/2.
In [35] the same estimate was established for an arbitrary weak solution satisfying
the energy inequality

(3)
Js

for 5 = 0, for a.e. 5 > 0, and for all t > s. In the case of the problem in the exterior
of a bounded domain analogous results were obtained for r e (1, 2) in [22] (n = 3)
and [5] (n > 3).

Many papers have been devoted to the investigation of the rate of decay of the
motion of a rotating fluid described by linear ([3], [8], [9], [25], [26]) and nonlinear
[30] equations.

We are interested in uniform (with respect to Ω) decay of the velocities as t tends
to infinity. The first estimate of this kind for a solution of the problem (1), (2) in
the exterior of a bounded domain was obtained by Masuda in [23]. The order of
decay t'1^ established there is not sharp, of course. In [13] Heywood constructed
a strong solution of the problem (1), (2) in an arbitrary domain Ω, η = 3, with
boundary uniformly of class C 3 , and proved the estimate sup^6£i |u(f, Λ:)| = Ο(Γι/2)
as t -+ oo. We formulate this result in greater detail. The requirement that the
boundary belong to the class C 3 uniformly means that there exist positive numbers
d and b such that for any point ξ e ΘΩ the intersection ΘΩ η {\χ - ξ\ < d} can
be represented in a local Cartesian system of coordinates as the graph of a function

ο

with derivatives up to the third order bounded by the constant b. Denote by .Ϊ(Ω)

the completion of the set 3(Ω) of smooth solenoidal compactly supported vectors on
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ο

Ω with respect to the norm ||v||, and by J '(Q) the completion of the same set with
respect to the norm ||v|| + ||Vvj|. Then it is asserted in [13] that there are positive
numbers C and G", dependent on d, b, and ν , such that if the initial function

ο

φ e 3ι(Ω) satisfies the condition

then there exists a unique solution u(i, x), p(t, x) e C°°(D) of the problem (1),
ο

(2); further, u e C([0, oo); J ' ( i i ) ) . It decays in the way indicated above. Setting
a = e||V0>||2 and a — 1, we get a simple sufficient condition for (4):

This result of Heywood does not take into account the zero boundary condition
of the problem. For example, if Ω is contained between two parallel planes, then
the Friedrichs inequality holds: | |υ | | < cn||Vw||, υ € Ο°(Ω). It was established in
[13] that a solution decays exponentially for such domains.

Our result concerns the maximal rate of stabilization of a solution of the problem
(1), (2), which is attained on initial functions with bounded support. It is natural
to expect that, for example, in the class of domains of revolution the slower the
expansion of the domain at infinity, the greater the rate of decrease to zero ensured
by the zero boundary condition.

Our goal is to get an estimate of the rate of decay of a solution of the problem
(1), (2) that takes into account the geometry of the unbounded domain. Such a for-
mulation of the problem was first investigated by Gushchin for a parabolic equation
with the second boundary condition. A survey of the literature on this question for
a second-order parabolic equation can be found in [10].

Here we formulate the results for a domain of revolution. It will be proved for a
broader class of domains satisfying the conditions A and Β in §3.

Let Ω be a domain of revolution with boundary of class C 3 of the form

(5) Ω = { χ : χ ? + χ 2

2 < / 2 ( χ 3 ) , Χ 3 > 0 } ,

determined by a monotonically nondecreasing function f(r) e C 3(0, oo). We re-
quire that the behavior of / be regular. Namely, there exists a constant ? e ( 0 , 1)
such that

(6) lim f(r)/f(qr) < oo.
r—•oo

The condition

(7) \f'\ + \f"\ + \f'"(r)\<ao, r > l ,

ensures that the boundary is uniformly of class C 3 .
We define the function r(t), t > 0, to be the inverse of the monotonically in-

creasing function rf(r), r > 0. Obviously, r(t) increases monotonically to infinity
and satisfies the equalities

W / 2 (r(i)) /(r(0) t '

It is assumed everywhere that the initial function has bounded support:

(9) φ(χ) = 0 for |JC| > Ro.
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Theorem 1. Let Ω be a domain of revolution of the form (5) satisfying the conditions
ο

described above. Suppose that the function φ e «Ι'(Ω) satisfies the conditions (4) and
(9). Then there exist positive constants κ and A such that the solution of the problem
(1), (2) satisfies for all χ e Ω and t > 1 the estimates

(10) \u(t,x)\<Acxp(-Kr2(t)/t),

(11) | |u(0|lw.(£i)<^ 1 / 2exp(-^ 2(0A),

(12) \\Vp(t)\\<Aexp(-Kr2(t)/t).

The constant κ does not depend on the initial function φ .

We remark that the equalities (8) imply the simple condition

(13) lim r//(r) = oo,
r—>oo

which suffices for the exponential in the estimates (10)—(12) to converge to zero as
t —> oo. In particular, if a domain Ω with boundary of class C3 has the form (5)
with function f(r) = r " , r > l , α ε ( Ο , Ι ) , then after uncomplicated computations
we find that r2(t)/t = fO-«)/(!+«). For such a domain the estimate (10) takes the
form

|u(i, x)\ <Aexp(-Kt{l-a^l'l+a)).

We impose a condition stronger than (13):

(14) l i m / ( r ) l n r = O .
r-+<x> r

Then we get from the equalities (8) and the relation (7) that

\nt ,. /(r)lnr _
hm . = hm ̂ -^ = 0.
f-»oo r2(t)/t r^oo r

Consequently, the condition (14) suffices for the exponential in (11) to converge to
zero more rapidly than any negative power of t.

An estimate of the rate of decrease analogous to (10) was proved earlier in [28] for
solutions of the first mixed problem for the heat equation. Moreover, for domains
of the form (5) and for nonnegative initial functions it was proved there that this
estimate is sharp when the behavior of / has some regularity.

The assertion of Theorem 1 remains valid also for the strong solutions constructed
by Serrin [33] and by Ladyzhenskaya [17]. Our choice of the strong solution as in
Heywood [13] is due to certain simplifications in the proofs.

It is well known that for a strong solution the energy identity

(15) ||π(ί)||2 + 2ί// ' | |νη(τ) | | 2 </τ=| | ί » | | 2

Jo

holds instead of (3). The method of proof of Theorem 1 amounts to reducing the
question of decay is a solution of the problem (1), (2) as t -* oo to the question of
its decay as \x\ —> oo with the help of the energy identity (see Theorem 4 in §4).

The problem of the decay of u(i, x) as |JC| —> oo is solved by Theorem 3 in §3
on an estimate in the exterior of the ball Ω~ = Ω\{|χ| < r} . Namely, under the
conditions of Theorem 1 there exist positive numbers Γ,γ, and A\ such that for
all R > 1 and Τ > 0 a solution of the problem (1), (2) satisfies the inequality

(16)
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The proof of Theorem 3 was our main difficulty. In the note [18] a class of
uniqueness was described for the linearized system of Navier-Stokes equations in an
unbounded domain. We have not been able to determine whether the method used
there can be adapted to the nonlinear system (1) in order to get an estimate analogous
to (16). The point is that the proofs are not given in [18], and the method itself is
not expounded in detail.

The proof of (16) is based on an idea in the paper [20], in which the corresponding
technique was used for the steady-state problems of Stokes and Navier-Stokes.

The presence of several "sleeves" of Ω is no obstruction to the use of our meth-
ods of proof. In particular, we allow domains with boundary of class C 3 that are
representable as a union U"=o Ω; where Ωο is a bounded domain, and Ω,, i > 0,
are domains of revolution of the form (5) with noncollinear rays of revolution. Here
/ can be taken to be the function f(r) = max, /]·(/·).

2. IN THIS SECTION WE PRESENT RESULTS FROM HEYWOOD'S PAPER

IN A STRONGER FORMULATION.

Define the space Ηο(Ω) of solenoidal functions to be the completion of ,Ι(Ω) in
the norm ||Vv||.

We formulate more completely the properties of the strong solution mentioned in
the introduction. If the initial function satisfies the condition (4), then it is asserted in
[13] that there is a unique strong solution u(t, x), p(t, x) e C°°(D) of the problem
(1), (2) with the following properties:

(17) ueC([0,oo);Ho(Q)),

(18) u, e L 2 ( 0 , T; j («)) f o r 0 < r < o o ,

(19) D2u, VpeL2(0, T;L2{Q)) ΐοτ0<Τ<οο,

(20) νιι (,£>2ιΐ€θ((0,οο);ΜΩ)),

(21) | |Vu(i) | |<«, ί > 0 ,

(22) u e C((0, oo) χ Ω).

Here we use the notation

• · 1 / 2

d2u,

The constant a{y, \\φ\\, d, b) in (21) ensures the maximum on the right-hand side
of (4).

Remark. Instead of (18) it is asserted in [13] only that u, e L2(0, Τ; ί 2 (Ω)) . We
show that (18) actually holds. The solution of the problem (1), (2) is obtained as
the weak limn of the Galerkin approximations um >k constructed for a sequence of

ο

bounded domains Qm c Ω. Since Ηο(Ω) c .Ι(Ω) in a bounded domain, each
Galerkin approximation satisfies (18). The relation (18) remains valid for the limit
function—the solution—after passage to the weak limit.

It is well known (see, for example, [17], Chapter I, §2.2) that the orthogonal com-
• ο

plement of ,Γ(Ω) in Ι^Ω) is

G(Q) = {v : ν = Vp for some ρ e W} 1οο(Ω) with V/> € L2(Q)}.
o

The orthogonal projection of Ι^(Ω) onto J(Q) is denoted by Ρ.
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We need some inequalities. Let us introduce the notation

u-Vv-w= ^ U

Let Ω be a domain in R3 with boundary uniformly of class C 3 . Suppose that
ο

the functions w e Ηο(Ω) and f e ,Ι(Ω) satisfy the identity

(23) / Vv/:V\dx - / f-vdx,
Ja Ja

for all ν € ί ( Ω ) . Then f is uniquely determined by w, hence we can introduce the
operator f = Aw. Further, we have the inequalities (see [13])

(24) ||Z>2w||

(25) sup|w(x)|<C2(| |Aw||
Ω

The constants C\ and Ci depend only on d, b, and u . It follows easily from (24)
and (23) and Aw = PAw.

We prove an assertion that refines some results in [13].

Theorem 2. Suppose that the boundary of Ω belongs uniformly to the class C3 and
the initial function satisfies (4) and (9). Then the solution of the problem (1), (2)
satisfies the inequalities

(26) ||V

(27) \ \ D 2 * { T ) \ \ 2 < b 2 \ \ x x { t ) \ \ 2 l { T - t ) forl + t<T;

(28) ||V/>(r)||2<Z>3||u(OI|2/(F-') forT>t+l,

(29) \u(T,x)\<b4\\u(t)\\/(T-t)V2 forx&Q, T>t

(30) / \\u,\\2dt+ f supu2(t,x)dt<b5.
Jo Jo xea

Here and below, the letter b with indices denotes constants depending only on
ν, \\φ\\, a in the inequality (21), and the numbers d and b in the definition of the
uniform class C 3 .

Proof. We recall the construction used in [13] to prove the basic assertions. An
unbounded domain Ω can be approximated by a sequence of bounded domains
Ω»,, (Jm Φ» = Ω, each of which has boundary uniformly of class C 3 with constants
d and b independent of m. Under the condition (9) it is possible to choose Ω»,
such that Ω», D supp φ . Then the solution of the problem (1), (2) for Ω is obtained
as the weak limit (in suitable spaces) of the sequence um of solutions for the bounded
domains Ω», with the same initial function φ . In turn, each solution u"1 is the weak
limit as k —* oo of a subsequence of Galerkin approximations um'k . We write some
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inequalities for the Galerkin approximations, omitting the indices for brevity:

(32) ||u,|| < («/ + l)||Au|| + C3(||Vu||2 + ||Vu||3),

(33) ~\\Au\\ < \\ut\\ + C3(||Vu||2 + ||Vu||3),

(34) ^ | | u , | | 2 + H|Vu,||2 < C4 | |^«||4 | |«,||2.

The constants C3 and C4 depend only on d, b, and ν . For the convenience of
the reader we give the numbering of the corresponding relations in [13]: (31), (35),
(74), (72). By Lemmas 8 and 10 of [13], the inequalities (21) and (3) are also valid
for the Galerkin approximations (equality holds in (3), of course).

We first prove the inequalities (26) and (27) for the Galerkin approximations. In
particular, it follows from (31) in view of (21) that

(35) ν f ||Au||2 ds < ||Vu(i)||2 + (C + C'a) max ||Vu(s)||2 f°° ||Vu||2 ds.
Jt s^' Jt

Another consequence of (31) and (21) is the differential inequality G' < a(t)G
for the function G(t) = ||Vu(i)||2, in which a{t) = (C + C'a)||Vu(i)||2 · From it we
get

(7(0 < G(s)exp / α(τ)άτ.
Js

By (3) with s = 0, this leads us to conclude that

(36) G(t) < b6G(s), t>s.

In a completely analogous way we can get from (34) the inequality

(37) IWOII2<*7l|ni(i)ll2. t>s.

An elementary consequence of (35), (21), and (3) is the estimate
/•OO

(38) / | | A u | | 2 ^ < 6 8 .
./o

From (38), using (32), (21), and (3), we obtain

(39) Γ \\ut\\2 ds < b9.
Jo

Let us substitute t = Τ in (36) and integrate with respect to s e {t, T). We get
{T - t)G(T) < b6 \J G(s) ds, which together with (3) yields (26).

From (35), (3), and (26) it is easy to get the inequality

(40) Γ ||Au||2 ds < bl0\\u(t)\\2/(T - t).
JT

We square (32) and integrate:
/•OO / /-OO /.O

/ | |u, | | 2i/j<*ii / | |Au| | 2 ^ + maxG(s) /
JT \JT S>T JT

Applying (40), (26), and (3) to the last inequality, we have
/•OO

(41) / 2

JT
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Let us substitute t = Τ + τ in (37) and integrate with respect to ι e ( Γ , Γ + τ ) .
Together with (41), this yields

T)\\2<bl3\\u(t)\\2/(T-t).

In particular, for τ = Τ - t and s = Τ + τ > t this gives the inequality

\\Ms)\\2<4bl3\\n(t)\\2/(s-t)2.

By using the relations (33), (21), and (26), it is now not hard to see that

| | Δ α ( Γ ) | | < 6 1 4 | | η ( ί ) | | / ( Γ - 0 , Τ > t.

We prove that the inequalities (38), (39), (26), and (27), which were established
up to now for the Galerkin approximations um'k , remain valid also for the solution
of the problem (1), (2). The constants b with indices are independent of m and k;
therefore, the inequalities (38) and (39) are obviously preserved after passage to the
weak limits in the corresponding spaces as k —> oo and m —> oo. Then we conclude
from (38) and (15) with the help of (25) that

L supu2(i, x)dt
0 Ω

Together with (39) this yields (30).
We proceed to a proof of the inequalities (26) and (27) for the solution of the

problem (1), (2). Fix t > 0. We choose a subsequence um'k for which the limit

lim \\um'k(t)\\ = L
k—yoo

exists. Using the equalities (3) for the Galerkin approximations nm'k and (15) for
the solutions um , we see that L < | |um(0l| · Indeed,

lim | | u m ' * ( i ) | | 2 = lim f /

<\\φ\\2-2ν f'\\Vu'"(s)\\2ds =
Jo

Here we have used the fact that the subsequence um'k converges weakly to the
function um in the space £2(0, t; Ηο(Ω^)) as k —> 00 . As is known, the norm

I \\Vnm(s)\\2ds

of the limit function does not exceed the limit inferior

lim [ \\Vvim'k{s)\\2ds.

We prove that the inequality (26) holds for each nm. Suppose that it fails for
some um for some Τ > t. By the continuity property (17), it fails also in some
interval [Τ, Τ + ε], so that

t-Τ+ε rT+ε L·

(42) / ||Vum(i)||2fi?i > | |uw(0| |2 / -^- ! -^^M| |u ' " (0 | | 2 .
JT JT S -1

On the other hand, integrating the inequality (26) written for the Galerkin approxi-
mations, we get

Τ+ε
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Passage to the limit as k —> oo gives the inequality

ι-Τ+ε

I \\Vum(s)\\2ds<ML2,
JT

which contradicts (42). Consequently, (26) holds for the functions um for all Τ > t.
In exactly the same way we pass in (26) from the functions um to the solution of

the problem (1), (2).
The proof of (27) is analogous to that of (26).
Since ||Au|| = \\PAu\\ < \\D2u\\, the inequality (29) is a consequence of (26), (27),

and (25). To prove (28) note that

< max|u(f,x) | | |Vu(r) | |
(43) x€Sl

<b4b\/2\\u(t)\\2/(T-t),

Further, from the equations (1),

Now (28) follows from (27) and (43). Theorem 2 is proved.

3. AN ESTIMATE OF A SOLUTION IN THE EXTERIOR OF A BALL

Here we shall not assume that Ω has the concrete form (5). Instead, we require
that it satisfy the conditions formulated below.

Let Br = {x 6 i?3 : |x| < r) be a ball of radius r, and let Ω, = Ω η 5 Γ . We say
that Ω satisfies condition A if:

A) There exist a number q € (0, 1) and an absolutely continuous monotonically
nondecreasing function l(r), r > 0, such that

(44) hml(r)/l(qr)<oo,
Γ~*ΟΟ

(45) r + l(r)<r/q, r>R0,

and for any ν e Ο°(Ω)

(46) / v2dx<al2{r)f \Vv\2 dx, r > Ro.
Ja, Jsi,

It can be assumed without loss of generality that the constants Ro in (45), (46),
and (9) coincide.

It is not hard to prove (see [29]) that condition A is satisfied, for example, by
domains of revolution of the form (5) with the function l(r) = f(r) if the conditions
(6) and (7) hold.

An important role in our method is played by estimates of the solution of the
problem D:

divy(x) = f(x), ν € W'(Q), [ f(x) dx = 0.
JQ

In general, the problem D has infinitely many solutions. In [20] it is proved that
for a bounded domain Q with Lipschitz boundary there exists a unique solution w
of problem D for which inf ||VV||Q is attained. It is this solution we have in mind
below. For it

(47) l|Vw||c<



516 F. KH. MUKMINOV

In order to distinguish families of domains for which we can choose the same constant
d\ in (47) for each domain in the family, it is useful to know the dependence of d\
on β .

Denote by Li{Q) the subset of functions in ί-2(β) with zero mean value. In
[2] an operator Rp: L2{R") -> W | (JR") depending on the parameter ρ > 0 was
constructed with the propertyjhat if the bounded domain Q is starlike with respect
to the ball Bp and supp / c Q, then supp Rpf c β . Further, if ν - Rpf, then ν is
a solution of problem D and the inequality ||Vv|| < fife 11/II holds, with the constant
<afe dependent only on the starlikeness ratio diamQ/p. Thus, the constant di(Q) in
the inequality (47) can be chosen the same for the family of starlike domains with
the same starlikeness ratio.

We say that a domain Ω satisfies condition Β if it satisfies condition A and
B) The set Ω\ΒΛο decomposes into Ν connected "sleeves", and there exists a

single constant d\ in (47) for the family of domains ω'{τ), i = \, ... , Ν, r > Ro,
where the w'{r) are the connected components of the set

o){r) = {x e Ω : r < \x\ < r + l(r)}, r>R0,

belonging to the different "sleeves".
For a domain of revolution of the form (5) it is natural to define the sets ΩΓ and

ω(τ) somewhat differently: ΩΓ = {χ e Ω : ;c3 < r) , ω{τ) — {χ e Ω : r < χ 3 <
r + / ( r ) } . Then the domain Ω satisfies condition Β if the requirements (6) and (7)
hold. Indeed, the facts that / is monotonically nondecreasing and the derivative / '
is bounded allow us to conclude that the family &>(r) can be regarded as a family of
domains with the same starlikeness ratio.

In the next example Ω is a domain of revolution with a cylinder removed. For
such a domain the use of the method in [29] for the case of the linearized problem
seems problematical.

Let Ω = Ω\{χ e R3 : x\ + x\ < 1} , where Ω is a domain of revolution of the
form (5) with the conditions (6) and (7). Then the domains oj{r) are not starlike.
But each of them can be represented as the union, for example, of four domains
with the same starlikeness ratios. Using results from [6], we establish that in this
case it is possible to choose the same constant d\ for the family of domains w(r).
Consequently, condition Β holds for the domain Ω.

If the domain of revolution

Ω - {χ : xf + x\ < f2(x3), x3 e (-00, oo)}

has "sleeves" expanding differently as x 3 -> oo and as JC3 —> -oo, then condition Β
may fail. But the proofs below can be modified in such a way that they work also
for such a domain. It is necessary simply to estimate the decay of a solution along
each "sleeve" separately as |x| -* oo .

The inequality (53) is the basic technical result to be used in proving the estimate
(16) in the exterior of a ball.

It is easy to see that the value of the number ν can be reduced to 1 by dilations
of the vector u, the pressure ρ, and the variable χ. Therefore, for the sake of some
simplifications the proofs will be carried out under the assumption that ν = 1.

Suppose that the conditions of Theorem 2 hold and u(f, x) is a solution of the
problem (1), (2). Let

M{t) = supu2(i, x), g(t, r) = M(t) + 2//2(r).



NAVIER-STOKES EQUATIONS IN UNBOUNDED DOMAINS 517

In view of (30) we have the simple inequality

(48)
Jo

We define the cutoff function η(χ) by

η(χ) = ξ((\χ\-Γ)/1(Γ)),

where <̂ (r) is a continuous function equal to 0 for r < 0, equal to 1 for r > 1,
and linear on the remaining interval. Then the support of the gradient η lies in the
closure of the set <w(r), and

(49) ν
'~l{x)\x\'

Moreover, for r > Ro

(50) -jl = ̂ -L + ̂ fe^'iO > 7̂ :

We introduce the notation

θ(0 = βχρ(-^Μ(τ)Λτ)

and

(51) H(t,r) = e{t){ ί η\νη(ί,χ)\2άχ+ f [
U n JO Ja

We note the inequalities

(52) H(t,r)<bn, S{t)>bls>0, f > 0 , r>Ro,

which follow from (21) and (30).

Lemma. Suppose that Ω has boundary uniformly of class C 3 , condition Β holds, and
the initial function satisfies the relations (4) and (9). Then there is a number β such
that for all t>0 and r > R0/q2

(53) H(t, r) < -/?/(r) (Hr(t ,r) + £ g(t, r)Hr(r, r)

Here the index r denotes the derivative, and the constant β does not depend on the
initial function φ.

Proof. Suppose that the set F consists of the values of t > 0 for which ut(t, x) e
ο

3(Ω). By the property (18), the measure of the complement (0, oo)\F is equal to
0. We fix one of the values t e F.

Let us multiply the Navier-Stokes equations by the function J/U, and integrate
over Ω. After uncomplicated transformations we arrive at the equality

/ ΐί2ηάχ+ /
Ja Ja

[ [ I ̂ ^ ^ \ dx.
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We obtain upper estimates for the terms on the right-hand side:

u · Vu · ηΐίι dx
Ω

Further, in view of (49),

3

< f /7(u2|Vu|2 + u^

/ Έ
co(r) ~ji

~ ί \**
< f (|Vu|2//2(r)f

<o{r)

To estimate the remaining integral we prove that /ω,(ιι,, νη)άχ = 0 for each
ο

connected component ω' of the set a>(r), r > Ro. Since ut(t, x) e J(Q), it suffices

to establish the equality for vectors ν e J(Q). The latter is obvious, because the flow
of a solenoidal vector with compact support in Ω across the section S' (r) = {x e
ω' : \x\ = r} of the z'th "sleeve" is equal to zero:

0 = / (v,x)/\x\dS = l(r) ί (ν, νη)dS.
JS^r) JSl(r)

ο

Thus, by condition Β there is a vector w e W\(co(r)) such that div w = (u^, V?;) and

||Vw|U(r) <di\\(nt, ^ y

The Friedrichs inequality enables us to get the estimate

We can now write the following chain of inequalities for the remaining integral on
the right-hand side of (54):

/ p(ut, νη)dx = / pdixv/dx = / Vp-wdx
Jco(r) J<o(r) Jco(r)

/ (u, - Διι + u · Vu) · w dx
J<o(r)

<[ [(u2 + u2|Vu|2)/2 + w2 + |Vu: Vw|]Jx
Ja>(r)

< [ [(u2 + M(0|Vu|2)/2 + c2u2 + (|Vu|2//2(r) + dfuj)/2] dx.
Jco(r)Jco(r)

Let us substitute the estimates just obtained in (54). After simple transformations
we have

[
< ί

^Ω

-r- f
a t Ja

( [(2//
Ja>{r)
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Integration with respect to t over (s, T) yields the inequality

/ / ην] dxdt+ ί η\Vu(T, x)\2 dx
Js Ja Ja

< ηΜ{ί)\νη\2άχάί+ / q|Vu(5, x)\2dx + h{T),
Js Ja Ja

where

= / / g{t, r)\Vv\2 dx dt + β j f u2dxdt.
Jo J(0(r) JO Ja>(r)

The properties of the solution of (1), (2) formulated in Theorem 2 enable us to pass
to the limit as s —> 0. In view of the identity η φ = 0 for r > RQ , one of the
integrals on the right-hand side disappears:

(55) / ( ην2 dx dt + { η\νν{Τ, x)\2 dx < f ί ηΜ{ή\νη\2 dxdt + h{T).
Jo Ja Ja Jo Ja

From (55), we get the differential inequality z' < M{T)(z+h{T)) for the function

z(T) = ί ί ί
Jo Ja

Consequently,

s i e x i ) ( / r

By integrating by parts we easily establish that

- f hl(t)S'(t)/e(T)dt = -hl(T)+ f h[(t)e(t)/e(T)dt.
Jo Jo

Combining this with (56) and substituting in (55), we have

fT ί Γ
/ / ηνι2dxdt + / f/|Vu(T, x)\2dx

Jo Ja Ja

<h2{T)+ / {h[(t) + M{t)h2(t))O(t)/e(T)dt.
Jo

Multiplying by Θ(Τ) and using the notation (51), we get

H(T, r) < βθ(Τ) ί ί ufdxdt
JO Jco(r)

[ ' rT \ r r' r 1
+ / g{t,r)e{t)\ |Vu|2i/xu?i + )S / / M2dxdz\dt.

Jo \J<o(r) Jo Ja>(r) j
From (50),

-l(r)—^ ' > θ{ή / \Vu\2dxdt+ / u2dxdr \,
ν? [Jo}(r) Jo Jw(r) J

hence the assertion of the lemma follows from (57).

(56) zT<[ expf/ M{T)dr)M(t)h(t)dt = - [ h{t)&(t)/B{T)dt.
J J J Jo
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Theorem 3. Assume the conditions of the lemma. Then there exist positive numbers
Τ, γ, and A\ such that for all R>\ and Τ > 0 the solution of the problem (1), (2)
satisfies the inequality

<58) f 4 °?((• *> i x"' s A'exp ( m - m) •
The constants Γ and γ do not depend on the initial function φ .

Proof. Fix a number r0 > RQ . Let the function r(s) be the solution of the Cauchy
problem r' = fil(r), r(0) = r0, and let h(t, s) = H(t, r(s)). The function g(t, r)
is monotonically nonincreasing with respect to r. Therefore, fixing the argument
r = r0 of this function, we can rewrite the inequality (53) in the form

h(t,s)< -hs(t,s)- f g(r, ro)hs(T,s)dr, s>0.
Jo

Integrating the last inequality with respect to s, we establish that

/ h(t,p)dp<h(t,s)+ [ g(T,ro)h(T,s)dT, s>0.
s JO

Continuing the integration, we get by induction on η the inequality

Joo jf=ly

where G denotes the integral operator

(Gh)(t,s)= flg(T,r0)h(T,s)dr.
Jo

Using the nonnegativity of the function h and the fact that it is monotonically
nonincreasing in the second argument, we can write

Js

2p"-ih(t,p)dp>^yh(t,s).

The binomial coefficients do not exceed 2" , and if we estimate the function h from
above by the number bn in (52), then the right-hand side of (59) does not exceed
the number

2"Z>i7exp / g(r,ro)dr.
Jo

If we now use the relation (48) and Stirling's formula, we get the following conse-
quence of (59):

It ^ /4n\" It
C e P

Here we substitute η = [Λ/4] > s/4 - 1. This yields

/*(*,*)< c, exp ( ^ + 1 - ^ ) , s>0.

Returning to the variable r, we have

(60) ^ ( i , r ) < C l exp(^-/J^), r>r0.
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Let R = ro/q2 and r = qR. Then (44) and the fact that l(r) is monotonically
nondecreasing give us the inequalities

L >c3R/l(R), l2(r0)>c,l2(R); ro>Ro,

where the constant C3 is independent of ro · Using (45), we conclude that η(χ, r) = 1
for \x\> R. Therefore, from (60), the notation (51), and the boundedness of θ(ί)
from below (see (52)) we get the estimate (58) for R > Ro/q2. It is valid also for
the remaining values of R > 1 in view of the boundedness of the left-hand side of
the inequality and the continuity of the right-hand side with respect to R.

Corollary. Assume the conditions of the lemma. Then the solution of the problem (1),
(2) for all ί > 0 and R > 1 satisfies the estimate

The constants A\, Γ, and y are the same as in Theorem 3.

The proof of the corollary is not complicated (see, for example, the proof of the
analogous assertion in [29]), and thus is not given here.

4. PROOF OF THEOREM 1

We first prove an assertion analogous to Theorem 1 for the class of domains sat-
isfying condition B. Then we derive Theorem 1 from it as a simple corollary.

We define the function p(t), t > 0, as the inverse of the monotonically increasing
continuous function l(p), ρ > 0.

Theorem 4. Suppose that the domain Ω satisfies the conditions of the lemma in §3.
Then there exist positive numbers κ and A-i such that the solution of the problem
(1), (2) satisfies for all t > 2 the estimates

(62) \\u(t)\\<A2t
l'2exp(-Kp2(t)/t),

(63) ||V

(64) | |D

(65) sup|u(i, x)\ < A2e\p(-Kp2(t)/t),
xea

(66)

The constant κ does not depend on φ .

Proof. The Γ and γ be the numbers in Theorem 3. Since p(t) tends to infinity as
i-»oo, there is a number Τ > 1 such that ρ(2Γί/γ) > 2 for all t > Τ.

Fix t > Τ and let R = p(2Tt/y)/2. We have equalities analogous to (8):

(67) 2Π 7R
2Π ·

Consequently, the estimate (61) can be represented in the form

(68) J tf(T,x)dx<S

for all i e [0, t].
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We write the inequality (46) for the vector u when τ > 0:

u2(T,x)dx<f |VU(T,
j a R

Using (68) and (15), we derive a differential inequality for the absolutely contin-
uous function Ε (τ) = ||ιι(τ)||2 :

alHRY

< | | V U ( T ) | | 2 = - ^ £ ( T ) , τ ε [ Ο , ί ] .

Solving it for the monotonically nonincreasing function Ε(τ), we get the estimate

Ε(ή <δ + Ε(0)e\p(-2t/al2{R)).

Replacement of δ by its value and use of the equalities (67) gives us

E{t) < t(E(0) + A2) exp(-K/92(2n/y)/i),

where κ = τηΐη{γ2/4Γ, 72/2αΓ2} . It can be assumed without loss of generality that
2F/y > 1. In view of the monotone increase of p(t), the inequality (62) is thereby
proved for t > Τ. It remains valid also for t e [1, T] by the boundedness of the
left-hand side and the continuity of the right-hand side with respect to t.

The relations (63)-(66) follows from (62) and Theorem 2.

Proof of Theorem 1. As noted in §3, all the requirements of the lemma hold under the
conditions of Theorem 1, and l{r) = f(r). Consequently, Theorem 4 is applicable.
Since p(t) = r{t), Theorem 1 is a consequence of Theorem 4.
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